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ON FINITE 2VSPACES 

P. H. DOYLE1) 

Kent 

In 1956 the author and H. Cohen discovered a few properties of finite topological 
spaces with the fixed point property. One construction that came of the investigation 
was that of a tower space on n points. This is the topology on n points in which there 
is precisely one non-void open set with exactly m points for each m, 1 ^ m ^ n. 
Thus the tower topology on the set {1, 2, 3} has as open sets 0, {1}, {1, 2}, {1, 2, 3} 
and this topology is unique up to permutation. It was used only to obtain the following 
existence theorem. 

Theorem 1. 1f n is any finite positive integer, then there is a finite space X on n 
points and X has the fixed point property. 

Proof. In establishing this the topology used is the tower topology and the 
proof is by induction. One notes that each nonvoid subset of a tower space is itself 
a tower space. Thus at the inductive step it is only necessary to consider maps of X 
onto X. But by definition of the tower topology such a map must be the identity. 

Corollary 1. The autohomeomorphism group of a finite tower space is trivial. 
Further studies of this stringent topology were undertaken by R. Hanson [ l ] 

with continuous multiplications in the space being the object of study. Finally some 
notes of M. McCord suggested the proper perspective for these special spaces [2]. 

Theorem 2. A finite topological space X is a T0-space if and only if X has 
a tower space as 1 — 1 continuous image. 

Proof. The sufficiency is clear since a tower space is itself T0. So let X be 
a finite T0-space. By the T0 property there is an open point at in X; namely a minimal 
non-void open set in X. In X — at the T0 property holds and so there is a point a2 

in X - a! that is open in X — av It follows that { a j and {al9 a2) are open in X. 
Thus by finite induction we have open sets in X that are exactly the open sets of the 
tower topology on a set with the same cardinality as X. 

Corollary 1. The tower topology on n points is the weakest T0-topology on n 
points. 

x) Prepared under a NASA Research Grant No. NsG-568 at Kent State University. 
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Corollary 2. If X is a finite T0-space on n points, then the points of X may be 
ordered at, a2, ..., an so that if Ut is the least open set containing ah Ut — a{ 

i - l 

c: (J Up while at is open. 
1 

Corollary 3. Each T0 finite space contains a closed point. 

Theorem 3. Every finite T0 connected space is the continuous image of the closed 
unit interval, [0, 1], 

Proof. If IKI is the cardinality of X, the result is clear for |X| = 1. Let us suppose 
in the inductive hypothesis that if any point x of X is chosen that a map can be found 
carrying an open neighborhood of 1 onto x. We assume the result for |X| < k and 
let \X\ = k. 

By Corollary 3 there is a point b in X and b is closed. Suppose that b separates X; 
that is, X — b = A u B sep. Then Aub and Bub are each closed connected 
subsets of X. The inductive hypothesis applies to each. There is a map f1 of [0, \~\ 
onto B u b such tha t / t ( i ) = b, and a map / 2 of [|, 1] onto Aub such that / 2 ( | ) = 
= b. Since A u b, B u b are both closed a n d / i , / 2 agree on the intersection of their 
two domains / : [0, 1] -• X given by / 1 [0, £] = ft9 f | [ i , 1] = f2 is a map. If we 
select a point c in X, then letf_1(c) contain the point p. Now imagine [0, 1] lying in 
[0, 2]. There is a mapping g of [0,2] onto [0,1] such that g | [0,1] = f, and g~l(p) 
contains an open neighborhood of 2. Hence fg can be used to meet the inductive 
hypothesis for \x\ = k. 

In case X — b is connected, then by the inductive hypothesis there is a map 
q : [0, ^] onto X — b such that a neighborhood of \ is thrown onto a point p' in 
a minimal neighborhood of b in X. Thus there is a map f1 of [0, | ) onto X — b 
that throws (|, £) onto p'; just retract [0, -J) onto [0, J ] . Now define a function 
/ : [0, 1] -> X b y / | [0, -J) = / i , / ( [ i , 1]) = b. Now the minimal open set containing 
b in X is Ut say. / - 1 ( U i ) = f~x(b) uf~1(U1 — b) which is open. So / is a map. 
Verification of the inductive hypothesis is as before. 

It is now a simple matter to show that all connected finite topological spaces are 
continuous images of [0, 1]. We do this by establishing the following lemma and then 
applying the above theorem. 

Lemma 1. Every finite connected topological space is a continuous image of 
a connected finite T0-space under a 1 — 1 mapping. 

Proof. Let X be a connected finite space. If X is T0, the result is obvious. Other
wise let a and b be points in X each of which lies in the least open set containing the 
other. So X — a is connected. 

Now our lemma is clear for |X| = l.If|X | = k and the result is known for k — 1, 
select a pair a and b as above. Then by the inductive hypothesis X — a is a 1 — 1 
continuous image of a connected T0 space Y'\f : Y' -> X — a. Let b' be / _ 1 (b ) and a' 
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a point not in Y'. Form the topological space Y = Y' u a' in which a' is open while a' 

is to be in each basis element of Y' that contains b'. Then Yis T0 and connected with 

this basis. We may now extend f to Yby defining f(a') = a. Thenf is a map of Y 

onto X. 

Theorem 4. Every finite connected topological space is a continuous image of 
the interval. 
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