C. H. Dowker
On Urysohn's lemma

Persistent URL: http://dml.cz/dmlcz/700880

Terms of use:

© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ON URYSOHN'S LEMMA

C. H. DOWKER and DONA PAPERT

London

In this paper we show how a well known non-tautological theorem of point-set topology can be proved in frame theory, that is in topology without points. The results are not new but were proved in the unpublished Cambridge dissertation: Dona Papert, Lattices of functions, measures and point sets, 1958.

A partially ordered set is a set \(L \) with a relation \(\leq \), such that

1) if \(a \leq b \) and \(b \leq c \) then \(a \leq c \), and
2) if \(a \leq b \) and \(b \not\leq a \) then \(a = b \).

A complete lattice is a partially ordered set such that

3) every subset \(A \) of \(L \) has a least upper bound.

The least upper bound is unique and is usually called the join of \(A \) and written \(\lor A \) or, in terms of elements, \(\lor a_\alpha \) or \(a_1 \lor a_2 \). Let \(1 = \lor L \); then \(1 \) is the greatest element of \(L \). Let \(0 = \lor \emptyset \), where \(\emptyset \) is the empty set; then \(0 \) is the least element of \(L \). The operation \(\lor \) is associative and commutative, for the join depends on the set \(A \), not on the arrangement of its elements.

If \(B \) is the set of lower bounds of \(A \), each \(a \in A \) is an upper bound of \(B \) and hence \(\lor B \leq a \). Thus \(\lor B \) is a lower bound of \(A \). This greatest lower bound of \(A \) is called the meet of \(A \) and written \(\land A \), \(\land a_\alpha \) or \(a_1 \land a_2 \). Clearly \(\land L = 0 \) and \(\land \emptyset = 1 \).

The topology \(T \) of a space \(X \), that is the set of all open sets of \(X \), is a complete lattice with the relation \(\subseteq \). For any family \(\{G_\alpha\} \) of open sets, the join \(\lor G_\alpha \) is the union \(\bigcup G_\alpha \) and the meet \(\land G_\alpha \) is the interior of the intersection \(\bigcap G_\alpha \), thus \(G_1 \land G_2 = G_1 \cap G_2 \). The elements \(0 \) and \(1 \) of \(T \) are \(\emptyset \) and \(X \).

A frame is a complete lattice satisfying the distributive law

4) \(a \land \lor b_\alpha = \lor(a \land b_\alpha) \).

In particular \(a \land (b \lor c) = (a \land b) \lor (a \land c) \). Also we have \(a \lor (b \land c) = (a \lor b) \land (a \lor c) \), for \((a \lor b) \land (a \lor c) = ((a \lor b) \land a) \lor ((a \lor b) \land c) = a \lor (a \land c) \lor (b \land c) = a \lor (b \land c) \). From 4) by commutativity we have \((\lor a_\alpha) \land b = \lor(a_\alpha \land b) \). Applying 4) again gives \(\lor a_\alpha \land \lor b_\beta = \lor(a_\alpha \land b_\beta) = \lor \lor a_\alpha \land b_\beta \), and, by induction, \(\lor a_\alpha \land \lor b_\beta \land \ldots \land \lor c_\gamma = \lor a_\alpha \lor b_\beta \ldots \lor c_\gamma \). The topology \(T \) of a space \(X \) is clearly a frame.
If L and M are frames, a function $\varphi : L \to M$ is called a frame map, or simply a map, if $\varphi \bigvee a_x = \bigvee \varphi a_x$ for each family $\{a_x\}$ and $\varphi \bigwedge a_i = \bigwedge \varphi a_i$ for each finite family $\{a_i\}$. In particular, when the families are empty, we have $\varphi 0_L = 0_M$ and $\varphi 1_L = 1_M$.

Let X_1, X_2 be spaces with topologies T_1, T_2, and let $f : X_1 \to X_2$ be a continuous function. For each $G \in T_2$, $f^{-1}G \in T_1$. Also $f^{-1} \bigvee G_a = \bigvee f^{-1}G_a = \bigcup f^{-1}G_a = \bigvee f^{-1}G_a$, and, for finite families $\{G_i\}$, $f^{-1} \bigwedge G_i = f^{-1} \bigcap G_i = \bigcap f^{-1}G_i = \bigvee f^{-1}G_i$. Thus $f^{-1} : T_2 \to T_1$ is a frame map. We shall now show that all frame maps of topologies of Hausdorff spaces are obtained thus from continuous functions.

Theorem 1. If X_1, X_2 are spaces with topologies T_1, T_2, if X_2 is a Hausdorff space and if $\varphi : T_2 \to T_1$ is a frame map, there exists a unique continuous function $f : X_1 \to X_2$ such that $f^{-1} = \varphi$.

Proof. For any point $x \in X_1$, let G be the union of all open sets G_a of X_2 for which $x \notin \varphi G_a$. Then $\varphi G = \varphi \bigvee G_a = \bigcup \varphi G_a$, so $x \notin \varphi G$. Thus G is the greatest open set of X_2 for which $x \notin \varphi G$.

Since $\varphi 1 = 1$, that is $\varphi X_2 = X_1$, and since $x \in X_1$, hence $G \neq X_2$. Let $y \in X_2 \setminus G$. If z is any other point of the Hausdorff space X_2, there are disjoint open sets U, V with $y \in U$, $z \in V$. Then $\varphi U \cap \varphi V = \varphi(U \cap V) = \varphi \emptyset = \emptyset$. Then $x \notin \varphi U$, $x \notin \varphi V$, so $V \subseteq G$ and $z \notin G$. Thus there is only one point $y \in X_2 \setminus G$.

For each $x \in X_1$, let $f(x)$ be the point of X_2 not in max $\{G : x \notin \varphi G\}$. Then for H open in X_2, $f(x) \in H$ if and only if $x \in \varphi H$; that is $f^{-1}H = \varphi H$. Thus $f^{-1}H$ is open, so f is continuous. And we have $f^{-1} = \varphi$.

If $g : X_1 \to X_2$ is another continuous function, choose $x \in X_1$ for which $g(x) = \pm f(x)$. Let $H = X_2 \setminus (g(x))$. Then $x \in f^{-1}H = \varphi H$ but $x \notin \varphi^{-1}H$. Thus $g^{-1} = \pm \varphi$. This completes the proof.

A base B of a frame L is a subset of L such that every element of L is a join of elements of B.

Theorem 2. Let L and M be frames, let B be a base of L and let $\varphi : B \to M$ be a function such that if $\{b_i\}$ is finite and $\bigwedge b_i \leq \bigvee c_a$ then $\bigwedge \varphi b_i \leq \bigvee \varphi c_a$. Then φ extends to a frame map $\mu : L \to M$.

(When the family $\{b_i\}$ is empty, the hypothesis states that if $1 = \bigvee c_a$ then $1 = \bigvee \varphi c_a$. In particular $\bigvee \varphi c = 1$.)

Proof. For $h \in L$ we define $\mu h = \bigvee_{b \leq h} \varphi b$. If $b \leq c$ in B then $\varphi b \leq \varphi c$. Thus for $c \in B$ we have $\mu c = \bigvee_{b \leq c} \varphi b = \varphi c$. Thus μ is an extension of φ.

If $h \leq k$ then $\mu h = \bigvee_{b \leq h} \varphi b \leq \bigvee_{b \leq k} \varphi b$; hence $\mu h \leq \mu k$.

For a finite non-empty family \(\{ h_i \} \), \(i = 1, \ldots, n \), we have
\[
\bigwedge \mu h_i = \bigvee \phi a \land \bigvee b \land \cdots \land \bigvee c = \bigvee \bigwedge \phi a \land \cdots \land \phi c.
\]
Since \(a \land \cdots \land c \subseteq \bigwedge h_i = \bigvee b \), hence by hypothesis
\[
\phi a \land \cdots \land \phi c \subseteq \bigvee c\phi a \land \cdots \land \phi c = \mu \bigwedge h_i.
\]
Thus \(\bigwedge \mu h_i \subseteq \mu \bigwedge h_i \). But since \(\bigwedge h_i \subseteq h_i \), \(\mu \bigwedge h_i \subseteq \mu h_i \), and hence \(\mu \bigwedge h_i \subseteq \bigwedge \mu h_i \).

Therefore \(\mu \bigwedge h_i \equiv \bigwedge \mu h_i \).

In case \(\{ h_i \} \) is empty this is still true, namely \(\mu 1 \equiv 1 \), for \(\mu 1 = \bigvee b<1 \phi b = 1 \).

For any family \(\{ h_a \} \) we have \(\mu \bigvee h_a = \bigvee \phi b \). When \(b \subseteq \bigvee h_a = \bigvee c b \subseteq c \subseteq h_a \), then \(\phi b \subseteq \bigvee a \phi c = \bigvee \phi c \bigvee \mu h_a \). Hence \(\mu \bigvee h_a \subseteq \bigvee \mu h_a \). But since \(\bigvee h_a \geq h_a \), \(\mu \bigvee h_a \geq \bigvee \mu h_a \) for each \(a \) and hence \(\mu \bigvee h_a \geq \bigvee \mu h_a \). Thus in each case \(\mu \bigvee h_a = \bigvee \mu h_a \).

Thus \(\mu \) is a frame map, as was to be shown.

A frame \(L \) is called normal if, whenever \(u \lor v = 1 \), there exist \(g, h \) such that
\[
g \lor v = 1, \quad u \lor h = 1, \quad g \land h = 0.
\]

Clearly the topology of a space \(X \) is normal if and only if \(X \) is a normal space.

Theorem 3. If \(L \) is a normal frame and \(u \lor v = 1 \) in \(L \) there exists a frame map \(\mu : T_R \rightarrow L \), where \(T_R \) is the topology of the real line \(R \), such that \(\mu(R \setminus (0)) \subseteq u, \mu(R \setminus (1)) \subseteq v \).

Proof. Let \(Q \) be the set of rational numbers. We shall construct \(g_p, h_p \in L \) for \(p \in Q \) so that \(g_p \land h_p = 0 \) and, if \(p < q \), \(g_p \lor h_q = 1 \). When they are thus defined for \(p \) and \(q \) with \(p < q \) we have \(h_p = h_p \land 1 = h_p \land (g_p \lor h_q) = h_p \land h_q \), so \(h_p \leq h_q \), and also \(g_q = g_q \land 1 = g_q \land (g_p \lor h_q) = g_q \land g_p \) so \(g_p \geq g_q \).

The rationals between 0 and 1 are countable; call them \(r_1, r_2, \ldots \). Let \(Q_n \) consist of all the rationals \(\leq 0 \) or \(\geq 1 \) and \(r_1, r_2, \ldots, r_n \). For \(p \in Q_0 \) we define \(g_p, h_p \) as follows:
\[
g_p = 1, \quad h_p = 0 \quad \text{for} \quad p < 0; \quad g_0 = u, \quad h_0 = 0; \quad g_1 = 0, \quad h_1 = v, \quad g_p = 0, \quad h_p = 1 \quad \text{for} \quad p > 1.
\]

Suppose \(g_p, h_p \) have been defined for \(p \in Q_n \). We now define \(g_r, h_r \) for \(r = r_{n+1} \).
Take the greatest \(p \in Q_n \) with \(p < r \) and the least \(q \in Q_n \) with \(q > r \). Then \(p < q \) and \(g_p \lor h_q = 1 \). By normality there exist \(g_r, h_r \) for which \(g_r \lor h_q = 1, g_p \lor h_r = 1, g_r \land h_r = 0 \). If \(s \in Q_{n+1} \) and \(s < r \) then \(s \leq p, g_s \geq g_p \) and \(g_s \lor h_r = 1 \). If \(s > r \) then \(s \geq q, h_s \geq h_q \) and \(g_r \lor h_s = 1 \). Thus \(g_s, h_s \) with the required properties are defined for all \(s \in Q_{n+1} \). Hence by induction they can be defined for all \(s \in Q \).

Take the base \(B \subseteq T_R \) consisting of all open intervals \((x, y) \) with \(x < y \). The function \(\phi : B \rightarrow L \) is defined by
\[
\phi(x, y) = \bigvee_{x < p < q < y} g_p \land h_q = \bigvee_{x < p} g_p \land \bigvee_{q < y} h_q.
\]
Let \((x_i, y_i), i = 1, \ldots, n\) be a non-empty finite family of intervals, and let \((x_a, y_a)\) be a family of intervals such that \(\cap (x_i, y_i) \subseteq \cup (x_a, y_a)\). Then

\[
\bigwedge \varphi(x_i, y_i) = (\bigvee_{x_1 < p_1 < q_1 < y_1} g_{p_1} \land h_{q_1}) \land \cdots \land (\bigvee_{x_n < p_n < q_n < y_n} g_{p_n} \land h_{q_n}) = \bigvee \cdots \bigvee g_{p_n} \land \bigvee h_{q_n} = \bigvee_{\max p < p < \min q} g_p \land h_q = \varphi \cap (x_i, y_i).
\]

For any rational numbers \(p, q\) such that \(\max x_i < p < q < \min y_i\), the compact interval \([p, q]\) is contained in \(\bigcup_{x_a < r < s < y_a} (r, s)\) for \(r, s\) rational. Hence \([p, q]\) is contained in some finite number of these intervals \((r, s)\), so the open interval \((p, q)\) is a finite union \(\bigcup_{j} (r_j, s_j)\) of such intervals. We may assume that no \((r_j, s_j)\) can be omitted from the union and that \((r_j, s_j)\) overlaps \((r_{j+1}, s_{j+1})\).

If \(r < t < s < u\) we have \((g_r \land h_s) \lor (g_t \land h_u) = (g_r \lor g_t) \land (g_r \lor h_u) \land (h_s \lor g_t) \land (h_s \lor h_u) = g_r \land h_u\). Hence \(g_p \land h_q = \bigvee g_{r_j} \land h_{s_j} \leq \bigvee \varphi(x_a, y_a)\).

If \(\bigcup (x_a, y_a) = R\) then \((-2, 3) \subseteq \bigcup (x_a, y_a)\) and hence \(1 = g_{-1} \land h_2 \leq \varphi(-2, 3) \leq \bigvee \varphi(x_a, y_a)\). Thus \(\bigwedge \varphi(x_i, y_i) \subseteq \bigvee \varphi(x_a, y_a)\) even when the family \((x_i, y_i)\) is empty. Therefore \(\varphi\) extends to a frame map \(\mu : T_R \to L\).

If \(x < y < 0\) then \(\varphi(x, y) = 0\). If \(0 < x < y\) then for \(x < p < q < y\) we have \(g_p \land h_q \leq g_0 = u\), and hence \(\varphi(x, y) \leq u\). Hence \(\mu(R \setminus (0)) = \bigvee_{\varphi(x, y)}^0 (x, y)\).

If \(x < y < 1\) then for \(x < p < q < y\) we have \(g_p \land h_q \leq h_1 = v\) and hence \(\varphi(x, y) \leq v\). If \(1 < x < y\) then \(\varphi(x, y) = 0\). Hence \(\mu(R \setminus (1)) = \bigvee_{\varphi(x, y)}^1 (x, y)\).

This completes the proof.

Theorem 4 (Urysohn). If \(E, F\) are disjoint closed sets of a normal space \(X\) there is a continuous real function \(f : X \to R\) such that \(f(x) = 0\) when \(x \in E\) and \(f(x) = 1\) when \(x \in F\).

Proof. Let \(U = X \setminus E, V = X \setminus F\); then \(U \cup V = X\). By Theorem 3 there is a map \(\mu : T_R \to T_X\), where \(T_X\) is the topology of \(X\), such that \(\mu(R \setminus (0)) \subseteq U, \mu(R \setminus (1)) \subseteq V\). By Theorem 1, since \(R\) is a Hausdorff space, there is a continuous function \(f : X \to R\) such that \(f^{-1} = \mu\). Since \(f^{-1}(R \setminus (0)) \subseteq U, f(E) \subseteq (0)\). And since \(f^{-1}(R \setminus (1)) \subseteq V, f(F) \subseteq (1)\). This completes the proof.

Reference