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POINT COUNTABLE OPEN COVERINGS 
IN COUNTABLY COMPACT SPACES 

G. AQUARO 

Bari 

The aim of what follows essentially is that of remarking some very simple 
properties of countably compact topological spaces which seem to have escaped 
notice previously and may be regarded as to belong to the folklore of the subject. 

For a matter of convenience, the following property of a topological space will 
be used throughout: 

(*) For any discrete1) family 

(Fk)keL 

of non empty closed sets of the topological space the index set L is necessarily 
countable. 

Obviously, if the topological space X fulfils condition (*) then any closed subspace 
also does. In addition, if the topological space X is the countable union of a sequence 
of its closed subspaces verifying property (*), then X likewise fulfils property (*). 

For instance, the above property (*) holds in each of the following cases. 

1) X is countably compact. As a matter of fact, in this case, the index set L 
turns out to be finite. 

2) X is the countable union of a sequence of its closed countably compact 
subspaces. 

3) X is a collectionwise normal space satisfying the countable chain condition. 
4) X is a Lindelof space. 

The following lemma will play a fundamental role in the sequel. 

Lemma. If the topological space E fulfils property (*), then for each point 
countable2) open convering (Ut)teI of E there exists a countable subcovering (UL)teH 

(H being a countable subset of I). 

Proof. Let 
V=\J{Ug x U). 

iel 

*) It should be emphasized that (Fx)XeL is discrete, according to the usual meaning, if for 
each point x of X there exists a neighbourhood U of x such that the set {A e L \ Fx n U =N 0} 
contains one element at the most. 

2) In the sense that, for each point x of E the subset [i e I \ x e Ut} of I is countable. 
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Evidently, Fis an open symmetric neighbourhood of the diagonal AE of E x E and, 
therefore, in force of a known lemma3), there exists a subset A of E such that4) 

(1) E=V(A)(=VV(x)) 
XEA 

and such that xeA, yeA, x^y implies y e CE(V(x)). 
Notice now that V(x) is open for any x e E and that 

(2) V(x) = U Ut 
ielx* 

where we assume that J* = {i e I j x e UL} . 
If x e A one has: 

* e fl C^V(y)) = CE( U V(y)) 
ysA-{x} yeA-{x} 

hence, U V(y) being open, one gets 
yeA-{x} 

{x}czCE( U V(y))czV(x) 
yeA-{x) 

while, on the other hand, from y e A — {x}, it follows that 

{x} n F(j) = 0 
and so, 

(V(*))*eA 

being an open cover of E, one infers that 

(WW 
is a discrete family of non empty closed subsets of the space £. 

As a consequence of property (*), it turns out that the set A is countable and 
therefore, letting 

H = [)I*X, 
xeA 

each J* being likewise countable, it turns out that H itself is countable. 
As, in force of (l) and (2), one gets 

E = \J(UVl) = \JUl, 
xeA ielx* IEH 

the lemma is proved. 

3) The lemma referred to in text can be found, for instance, in [1]. 
4) If V is a subset of the cartesian product Y X Z of the two sets Y and Z, then for each 

subset A of Y we assume 

V(A) = {z e Z | 3y e A : (y, z) e V) . 

For y e Y one puts V(y) = V({y}). 
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Once that this lemma has been established, the following proposition trivially 

holds: 

Proposition 1. If X is a countably compact topological space then for each 

point countable open covering of X there exists a finite subcovering. 

At this point, the proposition proved and a result of A. MISCENKO [4] enable us 

to affirm that: 

Proposition 2. If X is a (T^ topological space, then the following two proposi­

tion are equivalent: 

a) X is countably compact and possesses a point countable base 

b) X is compact and possesses a countable base. 

This result is already known5) (H. H. Corson and E. A. Michael [3]) and when, 

in it, X is more particularly assumed to be (T t) regular, then proposition b) above 

may be replaced by: 

b)' X is a metrizable compact space. 

Another application of Proposition 1 follows, after stating the definition. 

Definition 1. The topological space X is called countably metacompact if for 

each open covering of X there exists a point countable open refinement. 

Obviously one has 

Proposition 3. // a countably metacompact space X is countably compact then 

it is also compact. 

This result slightly generalizes a very well known result by ARENS and DUGUNDJI 
[2] replacing the metacompactness assumption by countable metacompactness and 
dropping separation axioms. 

The present paper is a slightly modified version of [ l ] . 
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