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CONCERNING A CATEGORIAL APPROACH 
TO TOPOLOGICAL AND ALGEBRAIC THEORIES 

Z. HEDRLIN, A. PULTR and V. TRNKOVA 

Praha 

The present note can be considered as a survey of some results concerning relations 
of algebraic and topological theories. The method used will be categorial since we 
may often associate with an intuitive notion of a theory an exact notion of a concrete 
category; e.g. with the theory of topological spaces we associate the category of 
topological spaces and continuous mappings, with the theory of groups the category 
of groups etc. One kind of relations between theories can be described by means of 
full embeddings. If a category $k can be fully embedded in £, then it corresponds to an 
intuitive meaning that the theory associated with £ is more general then the one associ
ated with St We shall consider two — in some sense extreme — kinds of embeddings. 

(1) full embedding — we shall call it a representation, 
(2) full embedding preserving underlying sets and the actual form of the 

mappings — we call it a realization. 

Representations. In [5] J. R. Isbell proved that every category of algebras can 
be represented in a category of algebras with unary operations only. In [2] it is shown 
that every category of algebras can be represented e.g. in the category of algebras 
with two unary operations (denoted by 21(1, 1)). Following [2] and an Isbell's 
definition ([6]) we shall call a category boundable if it is representable in 21(1, 1). 
Specifying set theory, it has been proved in [5] that the category of compact Hausdorff 
spaces is boundable. In [3] it has been proved that the category of topological spaces 
and their continuous mappings and many other categories appearing in topology are 
boundable. In [9] there is constructed a concrete category U such that every concrete 
category is representable in U. Thus, the problem raised in [5], wheter there exists 
a concrete category which is not boundable, has been reduced to the question, 
whether the category U is boundable or not. Nevertheless, this problem remains 
open. Trying to find a category which is not boundable, it has been shown that 
various categories are boundable ([2], [3]). 

From the above results it follows that the categories in which 21(1,1) is represent
able — call them binding — are sufficiently rich. It follows from [1] that the category 
of topological spaces with local homeomorphisms is binding. The paper [8] is in a 
close relation to this problem, as it shows categories in which every one object category 
can be represented, which are thus natural candidates for binding categories. The ne
gative results of [8] show that some topologically defined categories are not binding. 
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Realizations. Consider a countable set A and choose a point a e A. The semi
group of all mappings of A into itself is evidently isomorphic with the semigroup of 
such / : AL -> A for which f(a) = a and f(A \ (a)) a A \ (a). Hence, this two 
systems of mappings are not distinguishable by their algebraic structure, while their 
intrinsic structures differ substantially (e.g. every mapping of the second system has 
a fixed point). In our terminology, we may say that they do not differ from the point 
of view of representation, while they differ from the point of view of realization. It is 
possible to show ([9]) that there is a concrete category U such that every concrete 
category is realizable in U. However, no category which is rich enough to realize all 
the generally discussed categories may be defined by a simple structure. We shall 
show that certain families of categories can be realized in a substantially simpler 
defined ones. 

Paragraph 1 contains examples and definitions. In paragraph 2 we deal with 
representation of categories and in paragraph 3 with their realization. 

1. Examples and definitions 

To describe the intuitive notion of a "topological theory" in a simple way, we 
shall introduce categories defined by functors. First, we begin with examples. 

1. Topological spaces. A topology on a set X is a family of subsets of X 
(satisfying some axioms). We may describe it as follows: we have a subset t cz P(X), 
where P(X) denotes the power set of X. If (X, t) and (Xr, tf) are topological spaces, 
a mapping / : X -> X' is said to be continuous if and only if the preimage of every 
set in tf is in t. It suggests to define a contra variant functor P~ from the category of 
sets into itself, associating with every X its power set P(X) = P~(X) and with every 
/ : X -> Y the mapping P~(f) : P"(Y) -> P~(X) defined by P~(f) (A) = f~x(A). 
Now, we may define the continuous mappings / : (X, t) -> (Xf, tr) as those which 
satisfy the condition P"(/) (t') cz t. 

2. Proximity spaces. A proximity on a set X is a binary relation r on P(X) 
"to be near". If we define a functor P+, associating with every set X its power set 
P+(X) = P(X) and with every f:X -> Y the mapping P+(f) : P+(X) -> P+(Y) 
defined by P+(/)(AL) =/(AL) for every A cz X, we may describe the proximity 
mappings from (X, r) into (Xf, r') as those/ : X -> X' for which P+(f) preserves the 
relations (i.e. such that (P+ ( / ) (A), P+(f) (B)) e r' whenever (A, B) e r). We remark 
that the subset t cz P~(X) in the example 1) may be considered as a unary relation 
on P~(X); then continuous mappings are those/for which P~(f) preserve the unary 
relations. 

3. Uniform spaces. A uniformity on X is a subset (unary relation) s ofP(X x Z) . 
Denote by Q a functor associating with every X its square X x X and with every 
/ : X -> Ythe mapping Q(f) defined by Q(f) (x, y) = (f(x),f(y)). We see easily that 
/ : (X, u) -> (Xf, uf) is uniformly continuous if and only if P~ o Q(f) (u') cz u; 
i.e. if P~ o Q(f) preserves the unary relation. 
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4. Relational systems and algebras. An ^4-nary relation on a set X is a subset 
of XA. A type A = {ccfi | /? < 7} is a set of ordinals indexed by all ordinals less than 
a given one. A relational system r of a type A on a set X is a system r = {r^}, where r^ 
is a a^-nary relation on K, i.e. rfi c Xa/?. Let r and r' be relational systems of the same 
type on X and X' respectively. A mapping / : X -> X' is said to be compatible (more 
exactly rr'-compatible), if for every /? < y and every {xj e r^, {/(x^} e r^. 

In this sense algebraic structure of a type A = {otp \ fi < y} may be considered as 
a special type of a relational system of the type A = {0^ + 1 | /? < y}. The homo-
morphisms, then, are exactly the compatible mappings. 

5. Topological groups. A structure of a topological group on a set X consists 
of a topology t on X and a binary operation (ternary relation) on X. Continuous 
homomorphisms are mappings/such that simultaneously P~(f) preserves the topolo
gy and / is compatible. 

The above examples lead to the following definition. Let Ft9 ...,F„ be set 
functors (i.e. functors from the category of sets into itself), Al9..., An types. We 
define a category S((Fl9 A x ) , . . . , (F„, An)) as follows: the objects are systems (X, rl9..., 
..., rn)9 where rt is a relational system of a type At on Ft(X); a mapping/ : X -> Yis 
a morphism from (X, rl5 ..., r„) into (Y, s1? . . . , sw) if and only if /%•(/) are r ^ -
compatible for covariant F^'s and s ̂ -compatible for contravariant ones. (More 
exactly the morphisms are triples ((X9 rt9..., rn)9f9 (Y, sl9..., s„)); our simplified 
notation, however, will not lead to a confusion.) 

Now, we see easily that the category of topological spaces is a full subcategory 
of S(P~~, {1}), the category of proximity spaces is a full subcategory of S(P+

9 {2}) the 
category of uniform spaces is a full subcategory of S(P~ o Q, {1}), the category of 
merotopic spaces ([7]) is a full subcategory of S(P+ °P + , {1}), the category of 
bitopological spaces1) is a full subcategory of S(P~ oP +

 ?{l})? the category of 
topological groups is a full subcategory of S((P~9 {1}), (J, {3})), where J is the identity 
functor, the category 2l(-4) of all algebras of the type A and their homomorphisms is 
a full subcategory of S(I, A) (for A see above), the category of all directed graphs and 
their graph-homomorphisms is exactly the category S(I9 {2}) (it may be also described 
as S(Q9 {1}). The category of topological spaces with open continuous mappings is 
a full subcategory of S((P~9 {1}), (P+, {1})) etc. 

2. Representation 

Let St9 fi be categories. Full embedding of Si into fi is a one-to-one covariant 
functor $ from R into fi, which maps St onto a full subcategory of fi. Hence, if a9b 
are objects in St9 then the set of all morphisms from a into b is one-to-one mapped 
onto the set of all morphisms from <P(a) into <t>(b). If a full embedding $ from R 
into fi exists, we write St -^ fi and we say that St is representable in fi. 

1) Bitopological spaces have been introduced by A. A. Ivanov. 
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We shall divide our discussion into two parts. First, we shall deal with the 
representation of categories in categories of algebras. The second part of this 
paragraph will be devoted to categories in which every boundable category is repre-
sentable. 

In [2] the following representation schema has been proved: 

(1) S(I9 A) ^ S(I9 {2}) "-> %(Af), 

where A = {ocfi j /? < y} is arbitrary, A' = {a'fi | /? < y'} is arbitrary such that Za'fi ^ 2. 
As stated in the introduction, the question whether every concrete category is 

boundable remains open. It was shown in [4] that the answer may depend on set 
theory practicised (more exactly, it was shown there that in some rather odd set 
theories the answer is negative). However, we can prove that in the Godel-Bernays set 
theory without measurable cardinals2) the categories of certain large family (see 
below) are boundable. Before stating the main theorem, we shall give some defini
tions. 

Let us introduce the following notation. I is the identity functor. Let A be a set; 
QA is the functor associating with every X the set of all mappings XA. If / : X -» Y 
is a mapping, QA(f) : QA(X) -> QA(Y) is defined by QA(f)(<p)=f° <p. Similarly, 
P~ associates with every set X the set Ax

9 with every/ : X -> Ythe mapping PA(f) : 
: PA(Y) -> P1(X) defined by P~(/) (q>) = q> of. 

KA is defined as follows: KA(X) = 1 x 4 , KA(f) = / x id (i.e. KA(f) (x9 a) = 
= (f(x)9 a)). VA is defined as follows: VA(X) = X v A (= X x {0} u A x {1}, i.e. 
a disjoint union of X and A)9 VA(f) (x9 0) = (f(x), 0) VA(f) (a9 l) = (a, l). We 
recollect the definition of P+ from § 1 and remark that Q is naturally equivalent with 
Q2, P~ is naturally equivalent with P~, / with Qt and Kt. 

Now, we introduce some operations with set functors. The composition F o G 
is obvious. If F, G are set functors of the same variance, F x G is defined by 
(F x G) (X) = F(X) x G(X)9 (F x G) (/) = F(f) x G(f). Similarly, the functor 
F v G is defined. If F, G are functors of opposite variances, FG is defined as follows: 
FG(X) = F(Xf«\ FG(f) (<p) = F(f) o cp o G(f). 

Metadefinition. T/ze constructive functors are defined recursively as follows: 

1. J, V^, K^, Q^, P~, P+ are constructive, 
2. if F, G are constructive, so are F o G, F x G, F v G and FG whenever the 

operations are defined, 
3. z/ F is constructive and G naturally equivalent with F, then G is con

structive. 

Now we can formulate the main theorem: 

) This assumption may be easily weakened. But it is not known whether any assumption 
on measurable cardinals is needed at all. 
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Theorem. Let Fx,...,Fn be constructive functors, At,...,An types. Then the 
category S((FU At), ..., (Fn, An)) is boundable. Consequently, every category which 
can be fully embedded into some S((Ft, At), ..., (Fn, An)) is boundable. 

Boundable categories are those, which can be represented in some category of 
algebras; on the other hand, we shall call binding such categories, in which every 
boundable category is representable. By (1), a category 5̂  is binding if and only if the 
category 91(1, 1) is representable in ft. 

The categories S(P~, {1}), S(P'9 {2}), S(P~ o Q, {1}), S(P+ o P\ {1}) etc, 
which appeared as examples in § 1 are binding. Of course, if we restrict ourselves to 
the objects satisfying axioms of topological spaces, uniform spaces, merotopic spaces 
etc, the binding property obviously vanishes. Let us dicsuss it on S(P~, {!}). The 
full subcategory generated by those (X, t) with (Ut e t => \JUt e t) is still binding. The 
full subcategory of topological spaces is not, due to "too many constants". We may 
ask whether it will be binding after some other choice of morphisms. It can be shown 
by a slight generalization of the method in [1] that the category of topological spaces 
with their local homeomorphisms is binding. A. B. Paalman-de Miranda proved, 
that this is not true for the category of Hausdorff spaces, however, the category of 
Hausdorff topological spaces, even of the compact ones, is binding, if we take as 
morphisms the quasi-local homeomorphisms ([8]). Many other choices of morphisms 
lead to binding categories. 

3. Realization 

The notion of concrete category is often used in the sense of category for which 
there exists a faithful functor into the category of all sets and all their mappings — the 
so called forgetful functor. In this paragraph, this notion will be used in a stronger 
sense; under a concrete category we shall mean a category, the objects of which are 
some sets (usually endowed by structures) and morphisms some mappings of these 
sets; thus, a concrete category is a category ft together with a fixed forgetful functor • 
on ft. Let (ft, • ) and (ft', • ' ) be two concrete categories. Realization of (ft, • ) 
in (ft', • ' ) is a full embedding <P : ft ^ ft' such that • ' o <P = • . We write then 
# : (ft, • ) ---> (ft\ • ' ) • The existence of such a functor (realizability) is denoted 
by (ft, • ) zt (ft', • ' ) . If, for instance, the categories (ft, • ) , (ft', • ' ) are categories 
of sets endowed by structures, the realizability means — roughly speaking — that 
structures of the first type may be canonically replaced by structures of the second 
one in such a way that the corresponding systems of morphisms are exactly the same 
systems of mappings between the underlying sets. 

A simple example for illustration, showing a realization of partially ordered sets 
by means of topological spaces. Let ^ be a transitive relation on a set X. Define 
a topology ^ ) o n I a s follows: U c X is open if and only if x e U, y ^ x imply 
y e U. It is easy to see that, if (X, ^ ) , (Y, -<) are partially ordered sets, the continuous 
mappings from (X, t(^)) into (Y, t(<)) are exactly the former isotone mappings. 
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The categories S((FU Ai),..., (Fn, An)) and 2l(zl) are always supposed to be 
endowed by the natural forgetful functor associating with an object (X, r,, ..., rn) 
the set X etc. Therefore the symbols for forgetful functors will be omitted; we hope 
there is no danger of misunderstanding. 

While from the point of view of representation all (with trivial exceptions) the 
categories %l(A) were "almost the same", this is not the case with the realization. 
A necessary (and not sufficient) condition for $l(A) being realizable in 5l(z4') is, e.g., 
sup A :g sup A'. Hence, for instance, the category of grupoids is not realizable in any 
category of algebras with only unary operations, whatever the number of the unary 
operations may be. 

A theorem on realization concerning "topology-like" categories has been proved 
by M. Katetov in [7]. Namely, it was shown that many categories discussed in topolo
gy are realizable in the category of merotopic spaces. 

Th6 following theorem holds for categories defined by functors: 

Theorem. Let Fl9 ..., Fn be constructive functors Au ..., An types. Then there 
exist a natural number k and a set A such that 

S((Ft, A,),..., (F„, A„)) z> S((P~f o VA, {1}) . 

We remark that there are intermediate questions between representation and 
realization which are of some interest. It may be shown e.g. that from some point of 
view the topological categories and the categories of relation differ less than the 
categories of algebras and categories of relational systems. 

Proofs of the theorems had not been published yet. A special case of the theorem 
from § 2, covering e.g. the categories mentioned in § 1, has been proved in [3]. The 
present form of the theorem in § 2 follows from [3] and from the theorem in § 3 
under the assumption that no measurable cardinal exists. The proofs of the other 
statements can be found in the papers refered to. 
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