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A SURVEY OF DIMENSION THEORY 

JUN-ITI NAGATA 

Pittsburgh 

The purpose of this lecture is to give a survey of modern dimension theory 
emphasizing the development since 1961 when the first Prague Symposium was held. 
As for the development before 1961 I should like to invite people's attention to the 
excellent surveys by P. Alexandroff [1], [2], [3], [4], (The last paper covers results 
after 1961, too, emphasizing Soviet mathematicians' works.) 

The lecture will be divided into two parts, dimension theory of metric spaces and 
that for non-metrizable spaces. Generally speaking we have a very well-established 
dimension theory for metric spaces though new topics in this aspect still do not seem 
to be exhausted. On the other hand we are not yet in a position to be satisfied with the 
present status of dimension theory for non-metrizable spaces. 

1. Theory for metric spaces 

Since M. Katetov and K. Morita extended principal results of the classical 
dimension theory like sum theorem, decomposition theorem and product theorem to 
general metric spaces and proved dim .R = Ind R for every metric space R, there has 
been a remarkable progress in the theory for metric spaces. We dare say we know more 
about dimension of general metric spaces than they did of separable metric spaces 
twenty years ago. (dim R, Ind R and ind JR denote covering (or Lebesgue), large 
inductive (or Cech) and small inductive (or Urysohn-Menger) dimension respectively. 
As for basic definitions and theorems in dimension theory J. Nagata [1] is recom­
mended as a reference.) 

One of the most important events since 1961 was the negative settlement of the 
famous question "dim R = ind R for every metric space P?" by P. Roy [1], He 
presented a complete metric space R with ind R = 0, Ind R = dim JR = 1 which is 
a set of sequences of real numbers with a complicated topology. On the other hand it 
is well known (See A. Zarelua [1]) that 

Theorem, ind JR = Ind R = dim R for every metric space R which is a sum of 
countably many closed strongly metrizable spaces, i.e. metric spaces with o-star-
finite open bases. (Let us temporarily call such a space an S-space.) 
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Although it will be possible to sligthly extend this coincidence theorem, at present 
there seems to be no very interesting category of metric spaces between S-spaces and 
general metric spaces. Thus we can say we now have a quite good information about 
the condition for ind R and Ind R (= dim R) to coincide. But still some questions, 
for example, "For any integers n, m with 0 ^ n < m is there a metric space R of 
ind i? = n, dim R = Ind R = mT\ remain open as pointed out by R. Hodel. 
Besides, the theory on ind R of general metric spaces will be of some interest because 
it can differ from dim R in such an important space like a complete metric space. For 
example it will be an interesting problem to find a universal metric space of ind R ^ n. 

As for covering dimension J. Nagata [2] obtained a universal n-dimensional 
space as follows: 

Theorem. Denote by P(A) the product of countably many star-spaces with 
index A where \A\ — x and by Kn(A) the set of points in P(A) at most n of whose 
non-vanishing coordinates are rational. Then a metric space R has dim = n and 
weight :_t iff it is homeomorphic to a subset of Kn(A). We get an imbedding theorem 
for countable-dimensional spaces ( = a countable union of 0-dimensional sets) 
replacing the words 'at most n' with 'at most finitely many\ 

(Let {Ia | a e A} be a system of unit segments [0, 1]. By identifying all zeros in 
U{/ a I a G A} we get a star-shaped set S(A). Defining a metric Q in S(A) by 

( ,\ _ f\x ~~ y\ if x ' y belong to the same segment Ja, 
Q(X> y) — \ 

I x + y if x, y belong to distinct segments, 

we obtain a metric space called star-space with index A.) 

Comparing the general imbedding theorem with the classical one for separable 
metric spaces we notice that P(A) has infinite dimension while every n-dimensional 
separable metric space is imbedded in the (2n+ l)-dimensional Euclidean cube J2n + 1. 
This leads us to the following problem "Improve the general imbedding theorem finding 
another universal n-dimensional set in a (simple) finite-dimensional space instead of 
in P(A)'\ Any product of finitely many star-spaces does not serve this purpose, 
because it is an S-space while not every finite-dimensional metric space is an S-space 
as pointed out by Yu. Smirnov. Thus we have another question "Can we find 
a universal rz-dimensional S-space in a product of finitely many star-spaces?" 
Moreover the latter part of the above imbedding theorem leads us to the following 
conjecture. "The set of points in P(A) at most finitely many of whose coordinates 
are non-vanishing is a universal space for strongly countable-dimensional spaces 
(= a countable union of finite-dimensional closed subsets)?" It is also unknown 
whether the homeomorphic mappings from an n-dimensional metric space R into 
Kn(A) are dense in the metric space C(R, P(A)) of all continuous mappings from R 
into P(A) as in the separable case (C. Kuratowski's problem). 
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The negative answer to the long unsolved L. Tumarkin's problem by D. Hender­
son [ l ] was another remarkable event. Namely he constructed an infinite-dimensional 
compact metric space Q in a Hilbert cube such that Q has no n-dimensional closed 
subsets for 1 = n < oo. The space Q is not a countable-dimensional space because if 
it were, then it would have a transfinite inductive dimension (since Q is compact 
metric), and thus contain closed subsets of every finite dimension. However it is not 
yet known whether Q is weakly infinite-dimensional in the meaning of P. Alexandroff 
(for any countable number of pairs of disjoint closed sets (Ch C\), i = 1,2, , there 

00 

are closed sets Bt, i = 1, 2, ... which separate Ct from C\ and satisfy f\ Bt = 0). 

If it is proved to be true, then it negatively solves another famous question 
of P. Alexandroff "Does countable-dimensionality coincide with weak infinite-
dimensionality for any compact metric space?" Henderson also posed an interesting 
conjecture "Every strongly infinite-dimensional (= not weakly infinite-dimensional) 
compact metric space contains a compactum with no positive-dimensional sub-
compacta?" 

As seen in Henderson's result infinite-dimensional spaces have many negative 
properties. Here is another example due to K. Nagami and J. Roberts [1] of the 
negativity. 

Theorem. The set K^ of points in a Hilbert cube, whose coordinates are zero 
except finitely many at the most, has no metric completion which is countable-
dimensional. 

It is well known that K^ is a universal space for strongly countable-dimensional 
separable metric spaces (and therefore it is countable-dimensional of course) and 
that every finite-dimensional metric space has a completion with the same dimension 
even if it is not separable. We owe another interesting result in the field of infinite 
dimension theory to A. Arhangelski [1] who proved 

Theorem. Every metric space R has an increasing sequence {Jt | i < cOJ of 
O-dimensional subsets such that \J{Jt | i < C0i} = JR. 

K. Nagami [1] has shown that if the space JR is countable-dimensional, then coL 

can be replaced with co0, which is a generalization of Tumarkin's result. However the 
main purpose of the Arhangelski's paper is to develop the idea of rank of covering 
which was given by Nagata at the first Prague Symposium (See J. Nagata [1]). 
Arhangelski got several interesting results in this aspect, among which are 

Theorem. A normal space R has dim ^ n iff for every finite open covering It, 
there exists an open refinement 93 of rank ^ n + 1. 

Theorem. A compact Tx-space which has a base of rank 1 is metrizable. 

But the converse is not true. As a matter of fact he proved 
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Theorem. A metric space R is strongly countable-dimensional iff it has a basis U 
such that rankx U < + oo at every point x of R. 

These theorems lead us to a speculation that it might be of some interest to 
investigate general topological spaces which have a base U such that rankx U < + oo 
at every point x (or rank U < + oo). 

Let us turn our attention to topics on the relation between dimension and metric 
function. At the first Prague Symposium I posed the following conjecture: 

Theorem. A metric space R has dim = n iff it admits a metric Q such that for 
every n + 3 points x, yL, ..., yn+2 in R there is a pair of indices i,j satisfying 

Q(yt, y/) S Q(x, y/) (i + j) . 

The reason why I call it a theorem is that this conjecture was proved to be true 
by J.Nagata [3] and P. Ostrand [ l ] .To prove it Ostrand used the following theorem, 
interesting in itself: 

Theorem. A metric space R has dim ^ n iff for each open covering U of R and 
each integer k = n + 1, there exist k discrete families Ul5 ..., itfc of open sets such 
that the union of any n + 1 of the Ut is a covering of R which refines It. 

He not only proved the above conjecture by this theorem but also applied it to 
prove the following remarkable theorem (P. Ostrand [2]) which is a generalization of 
A. Kolmogoroff and V. Arnold's theorem answering Hilbert's problem 13 in the 
negative: 

Theorem. For p = 1,2, ..., m, let Rp be a compact metric space of finite 
m 

dimension dp and let n = £ dp. Then there exist continuous functions \jjpq from Rp 

P=I 

into [0, l ] for p = 1, ..., m and q = 1, ..., 2n + 1 such that every continuous, real 
m 

function f defined on f ] Rp is represented in the form 

2n+l m 

f(xL,...,xm)= E ? € [ £ ^ M ( * p ) ] , 
3 = 1 p = l 

where the functions cpq are real and continuous. 
Various modifications and generalizations may possibly stem from this theorem. 

Aside from the dimension theory it will be an interesting problem to seek conditions 
for every continuous function defined on a topological product to be expressible as 
(or approximable by) a continuous function of continuous functions on the coordi­
nate spaces. On the other hand the following J. de Groot's conjecture, which is similar 
to the solved conjecture, still remains open: "A metric space R has dim = n iff it 
admits a metric Q such that for every n + 3 points x, yl9 ..., yn+2 in R there is a triplet 
of indices i, j , k satisfying 

Q(yi,yj)SQ(x,yk) 0 * I ) ? " 
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A metric of such a special type was used by K. Nagami [2] to reprove Katetov-Mori-
ta's theorem: Ind R = dim R for every metric space JR. It will be worthwhile to try to 
extend Nagata-Ostrand's theorem to the infinite-dimensional case. Namely, "Is it true 
that a metric space R is countable-dimensional (or strongly countable-dimensional) 
iff it admits a metric Q such that for every sequence x, yl9 y2, ... of points in R there 
is a pair of indices ij satisfying g(yh yy) S Q{X, yy) (i * j ) ? I f n o t > t l i e n w h a t l c i n d 

of space is the space which allows such a metric?" 
We cannot pass the works on metric dependent dimension functions by K. 

Nagami, J. Roberts and his students either. For example, K. Nagami and J. Roberts 
[2] studied relations between dimension functions d2, d3, d4, \x dim (= metric 
dimension). The function d2 is defined as d2(0) = — 1, d2(R) S n if for any n + 1 
pairs of closed sets (Ch C-), i = 1, ..., n + 1 with d(Ch C-) > 0 there are closed 

n + l 

sets Bh i = 1, ..., n + 1 which separate Ct and C\ for each i and f) Bt = 0. Replacing 
i=l 

the word 'ti + 1 pairs' with 'finite number of pairs' ('countable number of pairs') 
they define d3(d4). Then 

Theorem. d2(R) ^ d3(R) ^ \i dim R ^ d4(R) = dim R ^ 2\i dim R for any 
metric space R. (The last part of the inequality is the well-known Katetov's theorem.) 

They pose an interesting question "d3(R) = |i dim R for any metric space?" 
after proving it for totally bounded spaces. In this connection we should note that the 
recently published book of J. R. Isbell [1] contains the result of his extensive study on 
uniform dimension. 

Now, let us concern ourselves with the field of mapping and dimension. (All 
mappings concerned are continuous.) Here we already have a quite well-established 
theory (especially for closed mappings), but various interesting results are still being 
obtained. One of them is the following theorem of A. Zarelua and Yu. Smirnov [ l ] 
which has a combined form of Alexandroff's theorem and Hurewicz's theorem. 

Theorem. A compact metric space R has exactly dimension n iff there is an 
essential O-dimensional mapping of R into the n-dimensional cube T\ 

They also gave a similar characterization in a non-metrizable case with the use of 
decomposing mapping which is a new generalization of Katetov's uniformly 0-
dimensional mapping. Recently open mappings have been more seriously studied 
than ever. For example R. Hodel [1] developed Alexandroff and Robert's works in 
this aspect. He especially obtained the following generalization of Alexandroff's 
theorem: 

Theorem. Let f be an open at most countable-to-one mapping from a locally 
compact metric space R onto a metric space S. Then dim R = dim S. 

(The same theorem is true for paracompact spaces JR and S if the condition 
'countable-to-one' is replaced with 'finite-to-one' as shown by Nagami.) We shall 
return to dimension and mapping later in the non-metrizable case. 
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J. de Groot and T. Nishiura [1] studied dimension of compactifications. Namely, 
comp R ^ n is inductively defined in a similar way as ind R ^ n but beginning with 
comp R = — 1 for any compact JR, and def R = the least n such that R has a compac-
tification S for which dim (S — R) = n. They obtained relations between comp R, 
def R and dim R for separable metric spaces R pursuing the similarity of theory on 
comp JR to dimension theory. De GrooVs conjecture "comp R ^ n iff def R — n?" 
still remains open though it is known to be true for n = —1,0 and for some other 
special cases. 

Let me conclude this section with a special but interesting result of A. Mischenko 

Theorem. Every metric space R can be imbedded into a homogeneous metric 
space G(R) with dim G(R) = dim R. 

As a matter of fact G(R) is a free group generated by R with a left invariant metric 
which is an extension of the metric of R. 

2. Theory for non-metrizable spaces 

In contrast to the metric case, there are many fundamental problems to be solved 
in the non-metrizable case. For example, it is not known whether ind .R = Ind R for 
every compact space R though it is not true for normal spaces. (As a matter of fact K. 
Nagami [3] constructed a normal space Z of ind Z = 0, dim Z = 1, Ind Z = 2.) It 
also remains unknown whether dim R ^ Ind R for every paracompact space 
(Throughout this section we assume every space is at least Hausdorff though some 
discussions may remain true without the Hausdorff condition. Moreover, 6n-dimen-
sional' means covering dimension = n unless the contrary is explicitly mentioned.) 
We may risk saying that the only very satisfactory result in the non-metrizable case 
(in comparison with the metric case) is that of the sum theorems which are established 
both for dim R (R : normal) and Ind R (JR : hereditarily paracompact) in a general 
form by K. Morita, M. Katetov, C. H. Dowker, A. Zarelua and others (See 
J. Nagata [l]). However remarkable progress has been achieved recently in various 
aspects, and it makes a complete survey extremely difficult. 

Among the most remarkable results on relations between different dimension 
functions is B. Pasynkov's [1] 

Theorem, dim R = ind R = Ind JR = ind G — ind H for every factor space 
R = GJH of a locally compact group G by a closed subgroup H. 

K. Nagami [4], too, obtained a similar result and also proved that 

Theorem. Every locally compact group G with dim G = n can be decomposed 
into the sum ofn + l 0-dimensional paracompact subspaces Bh i = 1, ..., n + 1. 
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As implied by the works of Mischenko, Pasynkov and Nagami, it is a quite 
interesting and prospective problem to study dimension in connection with the 
homogeneity of the space. (More generally speaking, homogeneity has never been 
thoroughly investigated from the point of view of general topology.) A. Zarelua [2] 
and V. Ponomarev [1] also worked hard to obtain interesting conditions for non-
metrizable spaces under which different dimension functions coincide. 

In the above papers of Pasynkov, Nagami and Ponomarev the method of inverse 
system (spectra) was shown to be quite useful. The study of this interesting device 
itself has also proved to be very fruitful, which leads us to expect that it may soon 
become a central topic in dimension theory. The following result of S. Mardesic [1], 
which is a generalization of Freudental's classical theorem, as is well known, made an 
epoch in this aspect of study: 

Theorem. Every compact space of dim ^ n is the inverse limit of an inverse 
system of compact metric spaces of dim ^ n. 

B. Pasynkov [2] generalized this theorem as follows: 

Theorem. 1. Every n-dimensional paracompact space is the limit of an inverse 
system of n-dimensional metric spaces. 

2. Every n-dimensional regular Lindelof space is the limit of an inverse system 
of n-dimensional separable metric spaces. 

3. A strongly paracompact space R has dim ^ n iffR is the limit of an inverse 
system of n-dimensional metric spaces. 

Recently V. Kljusin [1] added more to our knowledge in this aspect proving 

Theorem. Every n-dimensional paracompact M-space (paracompact topolo­
gical^ complete space) is the limit of an inverse system of n-dimensional metric 
spaces (complete metric spaces) and of perfect projection mappings. 

(A topological space R is called an M-space if there is a closed continuous 
mapping from JR onto a metric space S such tha t f - 1 (q ) is countably compact for 
every q e S.) 

In view of the active study of inverse limit, I wonder if it is not worthwhile to 
investigate dimension in relation to another similar concept inductive limit. (See, for 
example, J. Dugundji [1].) 

One of the most significant developments in general dimension theory is the 
recent construction of universal n-dimensional spaces for completely regular spaces 
by B. Pasynkov [3] and A. Zarelua [2]. (Probably these are the first decisive results 
in this aspect.) Answering a question of Alexandroff they independently succeeded 
to give an n-dimensional compact space Pnt with weight x such that every completely 
regular space of dim ^ n and weight ^ t is homeomorphic to a subset of Pnt. 
The methods of Pasynkov and Zarelua are each quite different from the other but 
the former's method is more elementary. Letting {jRa I a e ,4} be the collection of all 
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completely regular spaces of dim = n and weight = x, Pasynkov constructed his 
universal space as a continuous image of P(\J{pRa | oceA}), where /? denotes Stone-
Cech compactification while the union is a discrete union. His result also has a relation 
with Mardesie's result mentioned above, because both are proved by use of 
Mardesie's theorem on mapping factorization. Pasynkov also showed that his method 
simply reformulates Nagata's universal n-dimensional metric space (in a generalized 
Hilbert space) when applied on metric spaces. 

The method of inverse limit was shown again to be powerful when B. Pasynkov 
[4] used it to prove 

Theorem. Every compact space S of weight x is the image of some compact 
space R of dim = 1 and weight x under an open O-dimensional mapping. 

In the field of dimension and mapping we should also note the following theorem 
of E. Sklyarenko [1]. 

Theorem. Letf be a closed mapping of a paracompact space R onto a paracom-
pact space S. If dim f~x(q) = n for every qe S, then dim R = dim S + n. 

Although the same theorem is well-known for metric spaces, it has never been 
proved before for non-metrizable spaces in such a beautiful form. 

There was a substantial progress in the field of infinite dimension theory, too. 
(As for the references to the development of infinite dimension theory around 1960, 
Yu. Smirnov's [ l ] brief but excellent survey should be noted in addition to 
Alexandroff's survey papers mentioned at the beginning.) For example E. Sklyarenko 
[2], [3] obtained the following results. 

Theorem. Let B = GJH be the factor space of an infinite-dimensional locally 
compact group G by a closed subgroup H. If B is infinite-dimensional, then it is 
strongly infinite-dimensional and contains Hilbert cube I™. 

Theorem. A compact space R is strongly infinite-dimensional iff there is 
a mapping f of R into I™ such that for each finite-dimensional face F of Im the 
mapping f :f~l(F) ~» F is essential. 

Both are especially interesting in the meaning that they deal with the comparative­
ly unknown areas 'dimension and homogeneity' and 'characterization of grade of 
infinite-dimensionality by mapping'. 

B. Levsenko [1] proved the following theorem with respect to transfinite large 
inductive dimension. 

Theorem. Let R be a hereditarily normal space such that R = R± u R2, 
Ind Rt = X + p, Ind R2 = fi + q, where X, p, are limit ordinal numbers while p, q 
are integers. Then 

Ind R = max (X + p, \i + q) if X + \i, 

Ind R = X + p + q + 1 if X = \i. 
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In the field of dimension of compactification Yu. Smirnov [2] approached to 
a problem similar to the one considered by de Groot and Nishiura from a different 
direction, analogy with covering dimension. Namely he proved 

Theorem, dim (PR - R) = dim00 1? 
if R is a normal space and any two disjoint closed sets of /JJR — R can be 
separated by open sets in /?K, where dim00 K = ri means that any finite open collection 

k 

{Uu ..., Uk} of R for which R — \J U( is compact is refined by a finite open col-
i=l 

lection with the same property and order ^ n + 1. 

It is natural to return to the following basic questions before discussing a satis­
factory dimension theory to be established in non-metrizable spaces. 

1. What is the most adequate dimension function (for the purpose of dimension 
theory in non-metrizable spaces)? 

2. What is the best place (space)? 
3. What theorems (at least) should be contained in the theory? 

As for the first question our first concern naturally goes to dim R and Ind R 
though any possibility of other new dimension functions should not be excluded. 
Concerning 2,1 have some doubt about the adequacy of general normal spaces or even 
of general paracompact spaces though many good theorems are being proved for 
them. At any rate I hope a prospective general dimension theory to cover a category 
of spaces which includes all metric spaces and compact spaces as special cases, because 
we already have a very good dimension theory for metric spaces and a considerably 
good one for compact spaces. In this respect a dimension theory for paracompact 
M-spaces may be a good first step to begin with. (Every metric space and compact 
space are paracompact M-spaces, and the countable product of paracompact M-
spaces is paracompact M.) As for question 3, we now have good sum theorems and 
a considerably good theory for dimension and mapping, so product theorem may be 
a next keypoint to be overcome. 

Before introducing this problem let me mention the P-space of K. Morita [1] 
which is doubtless one of the most splendid products of general topology in these 
years. A topological space R is called a P-space if for any collection {G(aL... af) 
j a1? ..., ai e Q, i = 1, 2, ...} of open sets of R such that 

G(aL ... at) cz G(a1 ... aioci+1) , 

there is a collection {F^ ... a4) | a1? ..., at e Q, / = 1, 2, ...} of closed sets of R 
satisfying 

i) F (a 1 . . . a i ) cz G(ai . . . a t ) , 
00 

ii) if R = U G(a1 . . . a,) for a sequence {«i, a2, •••)' t h e n R =.U%-4 
i = l 
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Morita proved that for the product i? x S to be normal for any metrizable space S 
it is necessary and sufficient that i? be a normal P-space, and that every M-space is 
a P-space. It seems that there is a sort of parallelism between product theorems in 
general topology (i? x S is normal, paracompact etc.) and product theorems in 
dimension theory (dim i? x S ^ dim i? + dim 5, Ind i? x S = Ind i? + Ind 5, etc.) 
and therefore that not only M-space but P-space also has some importance in the 
dimension theory. Now, let us cite cases in which the product theorem on dimension 
is proved to be true. 

Theorem, dim i? x S ^ dim i? + dim S 

in each of the following cases. 

1. i? is paracompact and a countable union of locally compact closed sets, 
and S is paracompact (K. Morita [2]. This theorem implies that if R is a CW-
complex, then the equality dim i? x S = dim i? + dim S holds.) 

2. S is separable metric, and R x S is normal and countably paracompact. 
(N. Kimura [1].) 

3. i? is normal P, and S is strongly metrizable (N. Kimura [2]). 

The new theorem 3 of Kimura leads us to the question "What is the necessary 
and sufficient condition for a normal P-space i? in order that i? x S be a normal 
space of dim ^ n + m for any metric space S of dim ^ m?" It will not be so difficult 
to solve the question in the case of n = m = 0 modifying Morita's theory on P-
spaces, but the general case will be worth a serious investigation. 

Theorem. Ind i? x S = Ind i? + Ind S 

in each of the following cases: 

1. Risa totally normal space (each open subspace of R has a locally finite open 
covering by open sets which are Fff in i?) such that the product space R x S is 
totally normal for any metrizable space S, and S is metrizable. (K. Morita [3]. 
This includes the case in which R is perfectly normal, and S is metrizable; this 
improves NagamVs product theorem which requires R to be perfectly normal and 
paracompact.) 

2. R and S are paracompact M, and R x S is totally normal. 

Although the condition in 2 can be slightly weakened it is not known whether 
we can remove the condition for i? x S from 2 or whether we can replace the con­
dition M for the space i? in 2 with P. It is also open (though quite likely) whether 2 is 
true for covering dimension (presumably without the condition for i? x S). 

Let me conclude my lecture with a (prejudiced) list of grade to show how good 
(or bad) the present status of dimension theory for non-metrizable spaces is in compa­
rison with the theory for (separable and non-separable) metric spaces. 
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Dimension theory for metric non-metrizable 

spaces spaces 

Sum theorem E E 
Product theorem E F - G 
Decomposition theorem E F 
Imbedding theorem G F 
Subspace theorem E F - G j 

Dimension and mapping E G 1 
Dimension and inverse limit G F - G j 
Dimension and metric function G __ 
Infinite dimension theory G F 

i 

Relation between diíferent dimensions E F - G 

E = excellent, G = good, F = fair. 
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