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PRECLOSED MULTIVALUED MAPPINGS

DINH-NHO-CHUONG

Hanoi

The definition of preclosed univalued mappings has been given in our paper [4].
The purpose of the recent note is to give the definition of preclosed multivalued
mappings and to show some results concerning these mappings.

Let f: X — Y denote a multivalued mapping from a topological space X onto
a topological space Y, and let A be a subset of X, B a subset of Y.

Following V. I. Ponomarev [1] the set

f'B = E{xlxeX, fxn B0
will be called the large inverse image of B, the set
fi'B=E{x|xeX, fx < B}
— the small inverse image of B, the set
fA=E{y|yeY, fTlynA+0}
— the large image of A, and finally, the set

frA=E{y|yeY, f 'y c 4}

will be called the small image of A.

Definition. A multivalued mapping f : X — Y will be called a preclosed mapping
if for every point y of Y and for every neighbourhood Of ~'y of its large inverse
image f ™'y, there exists a set H such that f~'y < H < Of "'y and that the large
image fH of H is an open set in Y.

Remarks. 1. The set of all interior points of a set M is called the interior of M
and denoted by Int M. It is easy to see that f: X — Yis preclosed if and only if for
each point y € Y and for each neighbourhood Of 'y, we have y e Int f(Of ~'y).

2. f:X - Yis said to be closed (open) if fA4 is closed (open) for every closed
(open) set A = X. A moment’s consideration shows that any closed (open) mapping
is a preclosed mapping.
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In our papar [4] we have proved some theorems about univalued preclosed
mappings. We shall mention here some interesting results (f: X > Y denotes
a univalued continuous mapping):

1. Let f: X > Y be a preclosed, monotone') mapping, and let A be a set such
that A = f " !fA. Thenif dim A = 0 we have dim f4 = 0,ifind A = O thenind f4 =
= 0, and if Ind A = 0 we have Ind fA = 0.

2. Let f: X > Y be a preclosed, bicompact mapping, and let wR denote the
weight of the space R. Then we have wY < wX.

3. Let X and Y be Hausdorff spaces, aX — an extension of X, cY — a perfect
extension of Y (we use here the term due to E. G. Skiyarenko [2]). Let further
f: X > Ybe a preclosed mapping, which has an extension to a perfect (i.e., a closed,
bicompact, continuous) mapping f,. : aX - cY.

If f is a monotone') mapping, then f,. is also a monotone mapping.

We want to give some results concerning multivalued preclosed mappings. We
have

Lemma 1. Let f: X — Y be a multivalued mapping, and let G be an open-
closed subset of X. If f is a monotone') mapping, then the large image of G coincides
with the small image fG = f,G. If f is a monotone and preclosed mapping, then this
image fG is also an open-closed set (of Y).

Theorem 1. Let f : X — Y be a monotone and preclosed mapping. If Y is a con-
nected space, then X is also a connected space.

Now let two inifinite regular cardinal numbers a and b be given, a < b. A set M
is said to be an [a, b]-compact set if from any open covering y of M, Wthh has the
power y = m < b, we can choose a subcovering ', the power of which 3’ = f < a.
The notion of [a, b]-compactness has been defined by P. S. Alexandroff and P. S.
Urysohn. The characterization, which we use here, is due to Yu. M. Smirnov.

A set M is said to be an [a, oo ]-compact set if it is an [a, b]-compact set for
every b.

We shall say that a set M is a locally [a, b]-compact set if its every point has
a neighbourhood U, the closure U, of which is an [a, b]-compact set.

f:X - Yissaid to be an [a, b]-compact ([a, o0 ]-compact) mapping if the large
inverse image f ~'y of every point y € Yis an [a, b]-compact ([ a, oo ]-compact) set.

Finally, we shall say that f : X — Yis strongly continuous if the inverse mapping
f~!is both open and closed.

We have

Theorem 2. Let f be a strongly continuous, preclosed, [a, oo ]-compact mapping
from a space X onto a regular space Y. Then the local [a,b]-compactness will
be preserved.

) f:X—=Y (f: X—Y) is said to be monotone, if the (large) inverse image of every point y
of Y is a connected set.
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Theorem 3. Let f : X — Y be a preclosed, [a, b]-compact mapping and let Y,
be an [a, oo |-compact subset of Y. Then the large inverse image X, = f~'Y, is an
[a, b]-compact set.

Remark. In the case of univalued mappings, this theorem is, in a certain sense,
the generalization of a theorem, due to Yu. M. Smirnov (v. [3], theorem 5).
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