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DIFFERENTIAL STRUCTURES 

S. CIAMPA 

Pisa 

0. In the paper "Strutture differenziali e varieta" di classe W1", published in 
the Annali della Scuola Normale Superiore di Pisa, vol. XVIII (1964), pp. 343 — 365, 
(to be referred to in the sequel as [SD]), the author has given a definition of differen­
tial structure on a topological space and, consequently, of differentiable functions on 
the space so structured having in mind the scheme of inverse topologies deduced 
from a family of real functions. 

Here we deal with the same subject though with a slight change in the initial part 
of the definition. Such alteration was evolved in the consideration of certain examples 
and from development of the theory. 

Following the presentation of the main definitions we give certain properties of 
differentiable functions. Then, after the consideration of some significant examples, 
we take up the differentiability of applications between differentiable varieties. This 
theory, as yet, is far from being complete. 

Proofs of some of the following propositions may be drawn from those appearing 
in [SD], The complete proofs, however, are to be found in a paper on this subject 
which, the author hopes, will appear soon. 

1. Notational conventions: 

(a) The symbol cz between sets does not exclude equality. 

(b) R will always mean the set of reals endowed with the usual structure of topological 
field; whenever vector spaces or linear mappings are considered, they are always 
referred to R as ground field. 

(c) Suppose A and B are sets andf : A -> B is a mapping; if Y cz A, f(Y) will denote 
the set of images of all elements of Y under f 

(d) If A is a set, A* will denote the vector space af all mappings of A into if. The 

space A* will be considered only when A is not empty. 

(e) If f : A -» B is a mapping, f% will denote the so-called adjoint mapping of B* 
into A* which to every g e B# assigns gofeA*. The same symbol f* will be used to 
denote restrictions to subsets of J3*. 

(f) If A is a set and a e A, na will denote the mapping of A* (or of one of its subsets) 
into R such that na(g) = g(a), for every g e A*. Thus n is a mapping of A into Au 

(or into Y*, for some Y cz A9). 
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(g) If A is a topological space, C€°(A) is the vector space of all continuous functions 
of A into R (a slightly different use of this symbol is made in no. 2.). 

2. We recall first some well-known topological facts expressed so as to show the 
analogy with what follows. 

Let A be a set and <& a set of mappings of A into R. If we consider on the set A 
the topology generated by the set <& (i.e., the weakest topology under which all 
elements of <& are continuous), we get a completely regular space, the set of whose 
continous real functions is denoted by <£°(A, <&\ or, simply, by <$°(<&) when no confu­
sion can arise. The set <£°(<&) comes out to be a vector space containing the family <& 
and all constant real functions on A. 

We define now for every jf, <S c A*9 Jf <° <S to mean that «%#*) c <g°(<&) 
and, further, jf ~° <& to mean that <S°(j^) = <€%<&). Then the following facts hold: 

I. If jf, <3 c A\ then 

(a) <& c ff=><& <° yf; 
(b) <S cz Jf c c6JO(<&) =><& ~° Jf; 
(c) i/ |^|° is the class of all families ^ a A* such that <& ~° 34?, then <£°(<&) = 

= U{^-^e |^ | °} . 

The topological space obtained from the set A starting with the family <& is 
called a ^°-variety and is denoted by (A, <&). It is obvious that two varieties (A, <&) 
(A, yf) have the same topological structure if and only if <& ~° 34?: this means that 
in fact the variety (A, <&) should be written as (A, \<&\°). 

If (A, <&), (B, Jf) are two ^-varieties and g : A -> B, we say that the mapping g 
is continuous to mean that g%?f) <° <&. 

3. Let now A be a topological space and <& be a family of real functions on A. Let 
\<&\ be the vector space spanned by <& in A* and let [^]* be the algebraic dual of \<&\ 
With <&* we denote the set of the restrictions of all elements of [^]* to <&. It is easily 
seen that <&* is again a vector space and the mapping f : \<&\* -> <&* (adjoint of the 
inclusion of <& into \<&\) is an isomorphism. 

On the space \<&\* we consider the 0"([^]*, [^])-topology (a kind of w*-
topology). It is the weakest topology under which the images nf of a l l / e \<&\ in the 
algebraic bidual of \<&\ are continuous. We thereby obtain a locally convex topo­
logical vector space. Notice that the same topology is obtained if <& instead of \f&~\ 
were considered (i.e., it coincides with the cr([^]*, ^)-topology). 

Finally, we consider on <&* the topology induced by the mapping f (i.e., the 
finest topology under which f is continuous). This topology may be viewed as the 
a(<&*9 (i

u)~x (7i(^)))-topology (i.e., the weakest topology under which, for every 
fe<&,ifnf = ngoi* (such a function ng always exists), ng is continuous). We note 
that <&* too is a locally convex topological vector space. 
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In the product space A x A x <S* let us consider the set 

J(A, <S) = {(a, b, na - 7tb) : for all a, be A} 

and let us denote by <3(A, <S) the least (with respect to inclusion) closed set in A x 
x A x <S* which contains J (A, <S) and is such that for every a, b e A 

Vatb = {X : (a, b, X) e 9(A, <S)} 

is a subspace of the vector space <S*. For every a e A, the set 

Ta(A, <S) (or, simply, Ta) = {(a, X) : (a, a, X) e 9(A, <S)} 

is a topological vector space (with the structure induced by the natural bijection with 
the space Vaa) which is called the tangent space at a. The couples (a, X) e Ta are 
called tangent vectors at a. Finally, the tangent bundle, as usual, is defined to be the 
set 

T(A, <S) = {(a, X) : a e A, (a, X) e Ta(A, <S)} . 

4. Let now / : A -> R be a function, let af be the function from Jf(A, <S) to R 
which takes (a, b, X) into X(f). Notice that in the subspace topology (J'(A, <S) cz 
cz A x A x <S*) the function af is continuous and, moreover, it is linear in the 
third argument. 

The function / is said to be differentiate if and only if the function af can be 
extended to the whole of 3)(A, <S) so as to remain continuous and linear in the third 
argument. Such an extension, denoted by &f, when it exists is unique and linear with 
respect to / : meaning that if, for / and g in A*, of and ag exist, then, for ke R, 
also &kf+g exists and is equal to kdf + &g. 

The family of all differentiable functions is denoted by ^(A, <S). It is a vector 
space and contains all constant real functions on A. 

For every differentiable function/we define the differential of f to be the function 
df: T(A, <S) -» R which to every (a, X) associates af(a, a, X). The differential off 
at a, denoted by dfa, is the restriction of the differential df to the tangent space 
Ta(A, <S). Finally, as differential morphism on (A, <S) we define the mapping 
d : <WX(A, <S) -> (T(A, <S)Y which takes every differentiable function into its differential. 

As for the continuity, if <S, Jf cz A*, we define <S <x ^f to mean that <e\A, <S) cz 
cz <e\A, Jf?) and <S - 1 j f to mean that <g\A9 <S) = ^\A, Jf). 

It is useful to notice that: 

n . For every <S, ^ cz A\ 

(a) <S cz <#\A9 <S); 

(b) <S cz 34?=><S K1 3<?. 
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We want now to make precise the feeling that differentiable functions and tangent 
vectors determine each other; in the sense that if the tangent bundles coming from two 
families of functions are in a certain sense 'isomorphic' then the two families are 
~ ^equivalent, and conversely. To this end we present a definition and follow it by 
a proposition which exhibits some useful properties of the defined objects. 

Let <S, 2tf be parts of A* and let <S be contained in ^ . Then the identity mapping i 
on A is such that i\<S) cz j f and i*\jf*) <= <S*. Thus we are able to define the 
mapping ^ : A x A x j-f * -> A x A x <S* in such a way that rj(a, b, k) = 
= (a, b, i*\k)) = (a, b, k\<S). This mapping, called the canonical extension of the 
identity mapping, turns out to be continuous and linear in the third argument. Let 
now <S and Jf be two arbitrary subsets of AL*. We define 0 ( 4 , <S) « 0 ( 4 , j/f) to 
mean that the canonical extensions of the identity on A 

^l : A x A x (<S v 2/e)* -* A x A x <S* 

and 

t]2: A x A x (<S u JP)* -> A x A x j f * , 

restricted to the set 0 ( 4 , <S u Jf) are both homeomorphisms, respectively, onto the 
sets 0 ( 4 , <S) and 0 ( 4 , ,ffl) (consequently, for every a e A, they induce bicontinuous 
isomorphisms between Ta(A, <S u 3/e\ Ta(A, <S) and Ta(A, j«T)). 

Analogously, we define T(A, <S) « T(A, Jf) to mean that the restrictions of the 
mappings ^l and ^2 to the set T(A, <S u Jf) are homeomorphisms, respectively, onto 
the sets T(Al, <S) and T(4, Jf). 

III. If <S and Jf are subsets of A*, the following propositions are equivalent: 

(a) <S <l J?\ 
(b) <S c <€\A, JP); 
(c) 0 ( 4 , 2/e) « 0 ( 4 , <S u JIT); 
(d) <S u JtT <l Jf9 hence <S u 2tf ~ l jf; 
(e) %\A, <S u j f ) = <€\A, JP). 

From this proposition we get the corollary: 

IV. If <S, Jf? cz 4 s , then the following propositions are equivalent: 

(a) <S -1 #?; 
(b) 0 ( 4 , #) « 0 ( 4 , j f ) ; 
(c) T(4, # ) « T(4, Jf) . 

Other properties of differentiable functions are expressed in the following 
proposition: 

V. If<S, tf c A\ then: 
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(a) <S ~1<$\A,<S)\ 
(h)fz<€\A,<S)oJ}yj<S ~1<S\ 
(c) <€\A, <S) = U { ^ : & <= A* and 3/f - 1 #} ; 
(d) (S cz jf cz <€\A, <S) => <€\A, 9) = %l(A, j«r). 

With regard to the continuity of differentiable functions we have the following: 

VI. If <S, tf cz A\ then ^ <l <S cz <g°(A) => Jt? cz «%4). Hence, if the 
family <S contains only continuous functions then every differentiable function 
is continuous. 

Finally, we notice that if \<S\l denotes the class of all families Jf cz A* such that 
Jf ~l CS, then \<S\l, more properly than <S, determines the differential structure on 
the space A. For this reason we say that [^j1 defines a differential structure on A 
and we call the pair (A, \s\l) a differentiable manifold or, better, a <€l-variety. 
However, in practice we will write simply (A, <S)\ of course it should be understood 
that (A, <S) = (A, JUT) if and only if <S ~ l tf (i.e., \<S\l = \jp\l). 

5. Some examples of differentiable manifolds will now be exhibited. 
(a) In [SD, prop. XX] we have shown that in the ^-variety (Rn, <S), where Rn is the 
usual ri-dimensional space and <S is the family of the n projections nu ..., nn from Rn 

onto R, it is true that: 

(a.l) <€l(Rn, <S) is the class of all functions from Rn to R which are continuous with 
their first derivatives; 

(a.2) for every a e Rn, the tangent space Ta is isomorphic to Rn; 

(a.3) for every f e <£l(Rn, <S) and for every a e Rn, 

dfa = (DJ)adnt + ... + (DJ)adnn, 

where (DJ)a denotes thej-th derivative off at the point a. 

(b) Let P : Rn ~> Rp (with n < p + 1) be a continuous mapping with continuous 
first derivatives. If A = /3(Rn) and <S = {n^ ...,np}, then <S* is Rp and for every 
a G AL, if a = P(x) and the jacobian of /? does not vanish at x, then the tangent space 
to (A, <S) at a has dimension not less than n. If, moreover, x = P~x(a), then the 
dimension of Ta is n. 

(c) We notice that the tangent space Ta at the point a of a variety, which is embedded 
in a Rn space, contains the (intuitively understood) tangent cone at a. However, the 
dimension of Ta is not always the least which is compatible with this property: e.g., 
if P : R -> R2 is such that /?(x) = (x2, x3) for every x e R, then the tangent cone 
at (0, 0) contains only the subspace {(x, 0) : x e R}, whereas the tangent space 
T(0,o) is I?2. 

(d) Let A be a locally convex topological vector space. Let <S be the topological 
dual A' of A. Then <S* is the algebraic dual of A' with the w*-topology. In the space 
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A x A x <S* the set <3(A, <S) is constituted of all elements (a, b, k(na — nb)) where 
a, b e A and k e R, together with all triples (a, a, X) with a e A and X e <S*, since the 
set n(A) is dense in <S*. 

It follows that every differentiable function / on (A, <S) is strongly differentiable 
in the following sense: for every a, b e A, b =j= 0, the function from RtoR which to 
every k e R associates f(a + kb) is derivable at k = 0, and the derivative Sf(a, b) 
(sometimes called the GATEAUX-variation o f / ) is continuous with respect to both 
arguments on the product A x A, where the first factor has the initial topology 
while the second one has the weak topology inherited from the embedding into <S*. 
It follows that Sf(a, b) is continuous also in the product A x A when both factors 
have the initial topology. So, if A is a normed space, every differentiable function 
on (A, <S) is FRECHET-differentiable with continuous derivative. 

6. Let now (A, <S) and (B, #C) be two <€x-varieties. We say that the mapping 
/ : A -> B is (<S, Jf)-differentiable (or simply differentiable, when no confusion is 
likely to arise) if and only iff^(<i^1(B, ff)) < l <S. I f / i s a differentiable mapping, its 
differential df is defined to be the mapping from T(A, <S) to T(B, $?) which takes 
every (a, X) into (f(a), JJ), where jn e #£* is such that for every // e Jf7, fi(h) = 
= crf$(h)(a, a, X). As usual, the differential off at a is the restriction dfa of df to the 
tangent space Ta(A, <S). 

We notice that the differential is well defined since both ay and /#(y) are linear 
with respect to y. 

Noteworthy properties of differential mappings are expressed in the following 
propositions: 

VII. The differentiability and the differential of a mapping f : A -> B depend 
on the differential structures determined by the classes \<S\l and \j^\x and not on 
the actual families <S and Jf. That is,fo? <S, <£ c: A9 and J f 5 l c 5 * 5 if <S ~x <£ 
and J*f ~x Jt, then 

f is (<S, $?)-differentiable of is (<£, Jl)-differentiable . 

VOL If the mapping f : A -> B is continuous, then 

f is (<S, $e)-differentiable <-> f \^ ) <* <S . 

IX. Let <S be a family of continuous functions on A to R. If the continuous 
functions on the topological space B are determined by the family 2tf in the sense 
that there exists S£ c B* such that 2tf ~x <£ and <£ <° <£°(B), then every (<S, Jif)-
differentiable mapping is also continuous. Moreover to ensure (<S, 34?)-differentiabil-
ity off it is sufficient that f(<£) <x <S. 

X. If <S, 2tf c A*9 then Jf <x <S is equivalent to the (<S, J^)-differentiability 
of the identity mapping on A. 
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XI. Differentiability is preserved under composition. If (A, &), (B, &), (F, ££) 
are c€l-varieties and the mappings f : A -> B, g : B —> E are, respectively, (fS, Jf)-
and (ff, ££)-differentiable, then composite mapping g ° f is (<&, <£)-differentiable. 

XII. The differential df of a (differentiable) function f is continuous in both 
arguments. The differential dfa at the point a, is a continuous linear mapping 
from the tangent space at a into the tangent space at f(a). 

XIII. Suppose (A, {S) and (B, ff) are c€x-varieties. Let dA and dB denote, 
respectively, their differential morphisms. If g : A -> B is a differentiable mapping, 
then dA° g* = (dg)tf ° dB. That is, the following diagram is commutative: 

%l(A, <3) —^ (T(A, &))* 

Vg)* ' 

«\B9 JIT) - ^ (T(B, #))* 

XIV. Let i be the identity mapping on R, then, for every $ cz A*, the (^S, {/})-
differentiability for a given function g : A -> R coincides with the differentiability 
of g itself as defined in no. 4. Hence proposition VI becomes a special case of 
proposition IX. 

This last proposition may be completed noticing that also the differential of the 
function g as given in this no. coincides with the differential dg as defined in no. 4. 
We have only to bear in mind that actually the differential of a real function g at 
a point a, corresponding to the vector h, is the vector g'(a) h attached to the point 
g(a), which is usually omitted. 

Considering Rn with the usual differential structure and noticing that a mapping 
f:A-+Rn

9f= (fl9 . . . , /„), is differentiable if and only if so are the functions 
fj : A -> R9 we have that: 

XV. / / (A9
 CS) is a ^-variety, the class %>l(A9 <$) of differentiable functions is 

differentially complete in the sense that if gl9 ..., gn are differentiable functions 
of A into R9 and f is a differentiable function from Rn into R9 then the function 
/ o (gu ..., gn) : A -» R is differentiable. 

Finally we observe that the differentiability has a local character in the sense 
that if we define a function / from the ^-variety (A, &) into R to be differentiable 
near the point a e A if and only if there exists an open set T cz A to which a belongs 
and such that fjT = i#(/) e i^((^i(A9 $))9 i# being the adjoint mapping of the 
inclusion of the subset Tinio A9 then we have: 

XVI. For any given ^-variety (A9 &), the function f : A -> R is differentiable 
if and only if it is differentiable near every point of A. 
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7. We conclude with an open question which, we believe, is of some interest. 
Let (A, @) be a ^-variety and let B be a topological space. If a mapping ft : B -> 

~> yl is given, we may ask under which conditions there exists a family of functions 
Se c £* such that ft*(<T (,4, #)) = «*(B, S£). 

We notice that if the mapping ft is continuous and if such a family S£ does exist, 
then, since Se ~* ft*(#), the following equality holds h*(Vl(A, 9)) = ^(B, h*(9)). 

In particular, if B c ,4 and if ft is the inclusion mapping, the last equality gives 
a WfflTNEY-type theorem on extension of differentiable mappings. 

SCUOLA NORMALE SUPERIORE, PISA, ITALY 
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