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ON IMBEDDINGS OF POLYHEDRA INTO EUCLIDEAN 
SPACES 

V. BOLTJANSKI 

Moscow 

Let X be a topological space and E an Euclidean space. A continuous mapping 
f : X -+ E is said to be k-regular, if for all (k + l)-tuples of distinct points x0, xl9 ..., 
xk of X the points f(x0),f(x1), ...,f(xk) are vertices of a k-dimensional simplex in E. 
For example, the rnapf : X -» E is 1-regular, iff it is 1 — 1; the mapf is 2-regular iff 
the points f(x0),f(x1),f(x2) do not lie on a single straight line for distinct points 
x0, x,, x2 e X. This definition of a k-regular map was given by K. BORSUK. 

Let us denote by Fn(X) the set of all continuous maps X -> En, where En is an 
ti-dimensional Euclidean space. Denote by R[\X) the set of all k-regular maps 
X -> En. 

In connection with the definitions just given the following two problems arise: 

Problem 1. (Borsuk). What is the smallest integer n such that the set Rn
k(X) is non-

void for all compact metric spaces X of dimension ^ p? This smallest integer will be 
denoted by n( p, k). 

Problem 2. What is the smallest integer n such that the set Rn
k(X) is dense in the 

metric space Fn(X) for all compact metric spaces X of dimension ^ p. This smallest 
integer will be denoted by n'(p, k). 

It is clear that 

n(p> fc) ̂  ^'(p, k) for all p and k . 

The Nobeling-Pontrjagin imbedding theorem states that n'(p, 1) _" 2p + 1. 
Furthermore, the example of van KAMPEN (which is a p-dimensional skeleton of a 
(2p + 2)-dimensional simplex) shows that n(p, 1) ^ 2p + 1. Consequently we have 
the inequalities 

2p + 1 ^ n(p, 1) ^ n'(p, 1) ^ 2p + 1 

and it follows that n(p, 1) = n'(p, 1) = 2p + 1. Thus, if k = 1 Problem 1 coincides 
with Problem 2. 

It is easy to prove that n(p, 2) = 2p + 2. To show this, let X be a p-dimensional 
compact metric space. Then by the Pontrjagin-Nobeling theorem, there exists an 
imbedding map X -> S2p+1, where S2p+1 is the unit sphere in E2p+1. The composition 
map X -> S2p+1 -> E2p+1 is obviously 2-regular (since no three points of a unit sphere 
can lie on a straight line). Thus we have the equalities /?(p, 1) = 2p + 1 and n(p, 2) = 
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= 2p 4- 2. These equalities led Borsuk to the conjecture that n(p, k) = 2p + k. We 
shall show immediately that this conjecture is wrong. 

We will now state four theorems. 

Theorem 1. The number n\p, k) is equal to pk + p + k. 

The proof is rather complicated; it is given in [1] and uses a generalisation of the 
notion of intersection number. This generalisation is interesting in its own right. 

In virtue of the inequality n(p, k) :g n'(p, k), theorem 1 gives us an upper 
estimate for the number n(p, k): 

n(p, k) ^ pk + p + k:. 

We will next consider estimates from below for the number n(p, k). In [2], the two 
following theorems are proved: 

Theorem 2. Letf : X -» Eq be a k-regular map of the p-dimensional polyhedron 
X into Eq\ then 

"k" 
p + 

2 

This theorem holds for an arbitrary polyhedron X. But if we take a sufficiently 
complicated polyhedron (namely, if X is the p-dimensional skeleton of a cube or 
simplex of large dimension), then we obtain a stronger estimate as given in the follow
ing theorem. 

Theorem 3. We have: 

~k~ 
, pk + p + q 

n(p, k)ž( 
^ pk + q 

if k is odd , 
4 

if k is even 

In particular we have n(p, 3) _ 3P, which shows that Borsuk's conjecture is 
wrong. More precisely, Borsuk conjectured that the number k appears in n(p, k) as 
a summand, but in fact k appears in the estimate of n(p, k) from below as a multi
plicative factor: n(p, k) ^ pk. 

In [2], we obtained an interesting application of the above theorems to the con
structive theory of functions. In order to formulate this application we shall introduce 
some definitions. 

Let X be a compact metric space and C(X) the space of all real-valued continuous 
functions on X with the usual norm 

| | / 1 | = max|/(x) | . 
xeX 

Furthermore, suppose that 

fo(x) = 1, fi(x),...,fm(x) 
8 Symposium 
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are linearly independent elements in the Banach space C(X). Let us denote by Lm the 
linear subspace of C(X) generated by the elementsf0,f1? ...,fm- In the constructive 
theory of functions, the following problem of Chebyshev plays an important role: 

For a given function cp e C(X), find the polynomial of best approximation for the 

system (fo,^, .. -,fw); that is, find an element p* e Lm such that 

||<p — p* | | = min||<p — p | | . 
peLm 

A solution of Chebyshev's problem always exists, but in general it is not unique. The 
set V(cp) of all polynomials giving the best approximation is a convex set in Lm, which 
is called the polyhedron of best approximation. The number 

max dim V(<D) 
<p*C(X) 

is called the Chebyshev rank of the system (f0,fi, ••-,fm)-

Theorem 4. Let X be a p-dimensional polyhedron and m a positive integer. Then 
j 

the Chebyshev rank of any system (f0 = l,fi, ...,fw) is not less than m — 
p + i 

. Furthermore, there exists a svstem fn = 1, f., ..., fm on X s 
p + i 

. Furthermore, there exists a system f0 = l, f 1 ? ...,fm on X such that its 

^ T T T , T V 2p + 1 
Chebvshev rank is not more than m H . 

p + 1 p + 1 
In particular, if dim X ^ g, then for m ->oc the Chebyshev rank of systems 

(f0 = l,f j, ...,fm) increases at least as quickly the linear function Xm + u, where 
! 

X = _ > 0; thus the Chebyshev rank tends to infiinity. In other words, only on 
p + 1 

one-dimensional polyhedra can there be a system (f0 = l,f-, ...,fw) of bounded 
Chebyshev rank and arbitrary length m. 
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