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SOME APPLICATIONS OF COMPACTNESS 
IN HARMONIC ANALYSIS 

E. HEWITT 

Seattle 

The discovery in 1922 of the concept of compact Hausdorff space (6HKOMnaKTHoe 
Xaycupp^OBo npocTpaHCTBo) by P. S. ALEKSANDROV and P. S. URYSON [1] is a land­
mark in contemporary abstract analysis. Of course the idea of compactness did not 
begin with this memoir: notions and techniques involving compactness had been used 
with great effectiveness for many decades prior to 1922; but the final formulation of 
the concept of compactness, so elegant in its simplicity and so far-reaching in its 
applications, is the work of Aleksandrov and Uryson. 

Two comments on axiomatics may be in order. First, for the purposes of con­
temporary analysis, compactness has little interest without Hausdorff separation. 
Real- and complex-valued continuous functions are essential for the work of the ana­
lyst, and these (barring constants) may well be absent in a non-Hausdorff compact 
space. Thus a minimal infinite Tx-space (a subset is closed if and only if it is finite or 
the entire space) is compact but is interesting to analysts only as a curiosity.1) Second,, 
the many generalizations of compactness that have been put forward in recent years 
may in the future prove valuable for analysis. Thus Lindelof (finally ^-compact) 
spaces are frequently useful already; and other notions of this genre may well be used 
by future workers. Nevertheless, definite limitations exist in the usefulness of non-
compact (or non locally compact) spaces, as we will show. 

The purpose of this essay is to demonstrate the central role of compactness in 
harmonic analysis. Two theorems from functional analysis, however, are so important 
to harmonic analysis, and so clearly illustrate the importance of compactness, that 
they should be cited. 

The first of these is the Stone-Weierstrass approximation theorem [1]. Let X be 
a compact Hausdorff space, and let (H(X) be the algebra of all comp/cx-valued conti­
nuous functions on X, where addition and multiplication are as usual pointwise, and 
where \\f\\u = max {|/(x)| : x e X} f o r / e 6(X). Let © be a subalgebra of 6(X) that: 
(a) separates points of X; (b) is closed under complex conjugation; (c) has the property 
that for all x e X, there is a cp e © such that (p(x) #- 0. Then the subalgebra © is dense 
in the topology of d(X) induced by the norm || \\u. A proof of a special case, immedi­
ately adaptable to the general case, appears in [12]. It would be hard to overstate the 

*) The closed unit disk in the complex plane receives this topology as the maximal ideal 
space of a certain Banach algebra of analytic functions: see I. M. GEL'FAND and G. E. SILOV [5]. 
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importance of the Stone-Weierstrass theorem. We cite a few applications: to the proof 
of Fubini's theorem in one of its forms; to computing characters of compact Abelian 
groups;2) to computing irreducible unitary representations of compact non-Abelian 
groups. The Stone-Weierstrass theorem exhibits a complete dichotomy between the 
compact and noncompact situations. If X is any noncompact, nonvoid, completely 
regular space, then one can find a subalgebra @ of (£(X) satisfying the hypotheses of 
the Stone-Weierstrass theorem that is not dense in the uniform topology of (£(X). 
This is shown in [10]. 

Our second classical theorem from functional analysis is F. Riesz's represent­
ation theorem. LetX now be a locally compact Hausdorff space; let S00(X) denote the 
space of all complex-valued continuous functions on X each of which vanishes outside 
of some compact subset of X (this compact set depending upon the function); let 
(£00(X) denote the real-valued functions in (£00(X); and (£00(X) the nonnegative 
functions in (£00(X). Let J be any linear functional on (£00(X) that assumes nonnega­
tive real values for all functions in (£00(X).3) Then there exists a set-function t defined 
for all subsets of X having the following properties: 

(1) 0 ^ t(A) ^oo for all A a X; 
(2) if A~ is compact, then L(A) is finite; 
(3) i is countably additive on a cr-algebra ¥ of subsets of X that contains all 

closed sets: 
(4) for a l l / e e00(X), the identity 

'(/)= fл>)<4*) 

obtains. 
Thus the functional / is representable as the integral with respect to a countably 

additive measure. The role played by countable additivity in integration theory is 
vital. Without it, Fubini's theorem and Lebesgue's theorem on dominated conver­
gence fail utterly. A close examination of the proof of Riesz's representation theorem 
shows that compactness of the sets {x e X :/(x) + 0}~ is the key to proving that i is 
countably additive on Sf (see [14], § 11). It is not clear what to say of Riesz's theorem 
for non locally compact X, since (as in the case of the rational numbers with their 
usual topology) 0 may be the only function in (£00(X). However, we can consider 
a linear functional J on S(X) that is nonnegative and real on (£+(X), where X is any 
completely regular space and @(X) is the space of all bounded continuous complex-
valued functions on X. It is an easy matter to prove that 

/(/)= |7(*)<K*) ^ /^(I ) , 

2) If G is a compact Abelian group and Y is a subgroup of the character group X of G such 
that Y separates points of G, then Y == X. 

°) Note that we suppose no continuity property for I; the condition I(@00(X)) cz [0, oo[ is 
a replacement for continuity. 
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where now t is a nonnegative set function on all subsets of X that is finitely additive 
on an algebra of subsets of X that contains all sets 

{xeX:f(x) = 0} [/e<5(*)]. 

Glicksberg [6] has shown that every such t is countably additive if and only if X is 
pseudo-compact.4) 

We pass to some of the applications of compactness in harmonic analysis proper. 
We shall see that compactness enters not only as an essential hypothesis in many 
situations, but also as parts of definitions, and as a technique in proving existence 

theorems-

Abstract harmonic analysis as we know it today could not exist without Haar 
measure, which we will now describe. Let G be a group and / any function on G. 
For a, b in G, we denote by JJb and Jb9 respectively, the functions x ->/(ax), 
x ->/(xb), x ->f(axb), on G. Now suppose that G is a locally compact T0 group.5) 

Then there exists a linear functional / on €00(G) with the following properties: 

(i) / ( / ) is real and nonnegative for fe (500(G); 
(ii) I(J) = 1(f) for all a e G and fe S00(G); 

(iii) / * 0. 

Such a functional is called a left Haar integral on S00(G), and the measure A corres­
ponding thereto by F. Riesz's theorem is called a left Haar measure. (It is easy to 
show that/(f) is strictly positive forf =t= 0,fe @00(G).) A. Weil's original proof of the 
existence of a Haar integral [18] made use of compactness in the form of Tihonov's 
theorem; but H. CARTAN [2] shortly after the publication of [18] gave a strictly con­
structive proof of the existence and uniqueness (up to a multiplicative constant, 
naturally) of the left Haar integral. Compactness enters in Cartan's proof only in 
producing a certain partition of unity and in establishing some elementary inequalities. 
Nevertheless, local compactness is "nearly" essential for proving the existence of 
Haar measure. If a group G admits an invariant measure and if a certain technical 
restriction holds, then G is a subgroup of a locally compact group G, and G in a cer­
tain sense is "large" in G. The details are given in P. R. HALMOS [9]. It should be 
pointed out that a finitely additive invariant measure exists on every locally bounded 
F0 group (a topological group is locally bounded if it has a neighborhood V of the 
identity such that a finite number of translates of an arbitrary neighborhood of the 
identity cover V). This fact was proved by A. A. MARKOV [15]. 

The theory of almost periodic functions provides another excellent illustration of 
the uses of compactness. Consider any T0 topological group G and any function 
fe (£(G). For a e G, let DJ be the following function on G x G : (x, y) -> f(xay). 

4) We recall that a completely regular space X is said to be pseudo-compact if every conti­
nuous real-valued function on Xis bounded. Such spaces need not be compact: see [11]. 

5) It is well known that a T0 group is completely regular and that a locally compact T0 group 
is normal. 
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It is elementary, although not completely trivial, to show that the following assertions 
are equivalent: {J: a e G}~ is compact in S(G); {fb : b e G}~ is compact in @(G); 
{afb '. a, b e G}~ is compact in €(G); {DJ: a e G} is compact in S(G x G). (In all 
cases we use the uniform topology in £L) A function satisfying one and hence all of 
these properties is called almost periodic. Here compactness (ordinary sequential 
compactness, it is true, since (5(G) is a metric space) is a part of the definition. There 
is a complete theory of almost periodic functions. The space 2((G) of almost periodic 
functions on G admits a unique nonnegative left invariant mean value (whose exis­
tence is proved by wholly elementary arguments), which is right and inversion in­
variant. Functions in 21(G) are uniform limits of linear combinations of coefficients of 
finite-dimensional continuous unitary representations of G; and so on. 

A promising generalization of almost periodicity was advanced a few years ago 
by W. F.EBERLEIN [3]. Topologize S(G) not with the uniform topology but with the 
weak topology based on linear functionals in the conjugate space S*(G). Say that 
a function f e S(G) is weakly almost periodic if {J: a e G}~ or {fb:be G}~ is 
compact in the weak topology for S(G) (the two conditions are equivalent). One may 
then ask if the space of weakly almost periodic functions for a locally compact G 
admits an invariant mean value. For Abelian G, it is trivial that there is such a mean, 
since the space of all bounded functions admits an invariant mean in this case. For 
non-Abelian G, the problem seems to be unsolved. (For partial results, see Glicksberg 
and de Leeuw [7].) 

Our third illustration of the uses of compactness in abstract harmonic analysis is 
the proof of the famous theorem of I. M. GEL'FAND and D. A. RAIKOV [4]. (See also 
[8].) Let G be a topological group. A continuous unitary representation of G is 
a mapping x -» Ux of G into the group of unitary operators on some Hilbert space J-f 
such that Uxy = UxUy for all x, y e G and such that x -> <£/*£, rj} is a continuous 
function on G for all £, rj e^f. A unitary representation U is irreducible if there is no 
closed subspace $f of 3tf distinct from {0} and J^ such that Ux(£f) c ^ f o r all xeG. 
The Gelfand-Raikov theorem asserts that if G is locally compact, then for every x in G 
different from the identity, there is an irreducible unitary representation U of G such 
that Ux is not the identity operator. This theorem implies at once the Peter-Weyl 
theorem and the fact that a locally compact Abelian group admits sufficiently many 
continuous characters. In addition it has inspired an immense amount of research on 
computing the irreducible unitary representations (for the most part infinite-dimen­
sional) of the classical groups. 

The proof of the Gelfand-Raikov theorem is somewhat technical. There are two 
versions of it, one based on positive-definite functions on G, another based on the 
following considerations. Let £X(G) denote the Banach space of all Borel (let us say) 
measurable complex-valued functions / on the locally compact group G for which 

I/И. lA' x)\ dA(x) <oo , 
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where X denotes a left Haar measure on G. Forf, g in ?i(G), define the function f * g 
(convolution, Faltung, or CBepTKa) by 

f*9(x) = f(xy) g(y~1) dX(y) , for xeG . 

G 

It can be shown thatf* g(x) exists and is a complex number for A-almost all x e G, 
that the function f * g defined in this fashion is in £i(G), and that the inequality 

\\f*g\U S | |/||i.|M!i 

obtains for all f, g in ?i(G). With pointwise linear operations and multiplication 
defined as convolution, Xi(G) is thus a (complex) Banach algebra. 

In addition, the algebra fij(G) admits an involution. For x e G let 

Ą*)= ïfx-г(y)Чy)l[f(y)Чy)> 

where f is any nonzero function in &Q0(G); A is continuous and positive and satisfies 
the relation A(xy) = A(x) A(y) for all x, y in G. (The fact that zl depends on x alone 
follows from the uniqueness of left Haar measure.) Now forfe £i|G), letf~ be de­
fined by 

rW=7(Oj^-
The mappingf ->f~ is an involution on ?i(G). 

A linear functional p on £i(G) is called positive if p(f~ *f) is real and non-
negative for allfe £i(G). A proof of the Gelfand-Raikov theorem can be given that 
depends upon a close analysis of positive functionals on £i(G), their connection with 
representations of £i(G) by operators on Hilbeft spaces, and the connection of these 
with continuous unitary representations of G itself. The subspace $ of it(G) consisting 
of all functions such that f = f~ is a real Banach space. The set P of all positive 
functionals p on ?i(G) such that p(f~) = p(f) and |p(f)| ^ p(f~ * f ) } for all 
fe ?i(G) is a compact convex subset of the (real!) conjugate space .£>*. By the Krein-
Milman theorem, P is the (*-weak) closure of the convex hull of its own extreme points. 
The extreme points of P correspond to irreducible representations of ix(G)y and so in 
a certain sense every representation of £i(G) can be approximated by irreducible 
representations. Finally, the mapping (p -> f * cp = Tfcp of £2(G) into itself is a bound­
ed linear operator for allf e Si(G) and the mappingf -> Tf is a faithful representation 
of ?i(G) by operators on the Hilbert space £2(G). Note too that (Tf)~ = Tf„9 where 
T~ denotes the adjoint operator to T. 

The facts just outlined give a proof of the Gelfand-Raikov theorem. The crux of 
the proof is of course the Krem-Milman theorem: and this theorem depends wholly 
upon compactness. 
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For a compact group G, the function spaces S(G), S2(G), and ?i(G) are Banach 
algebras under convolution. Their structure is completely known: all maximal ideals 
and closed ideals in these algebras have been identified. Here one may say that 
compactness has registered another success. For noncompact locally compact G, very 
little is known of the detailed structure of it(G) (S(G) and Z2(G) are not algebras in 
this case). Another Banach algebra can be defined for every locally compact G. Let 
@0(G) be the Banach space of all continuous complex-valued functions f on G such 
that for every a > 0, the set {x : x e G, |f(.x)| §: e} is compact. Let Ji(G) denote the 
conjugate space of S0(G). It is convenient to use F. Riesz's theorem to represent ele­
ments of Ji(G) as measures. Then for \i, v in Ji(G) andfe 50(G), let 

џ * v(/) = f(xy) dv(y) àџ(x) . 

GG 

This definition is an extension of the definition of convolution for functions in 
£i(G) (regard functions in £i(G) as measures absolutely continuous with respect to 
left Haar measure). The algebra Ji(G) has been extensively studied (for example, see 
[16] and [13]), but its detailed structure remains a nearly complete mystery, even for 
the simplest compact infinite groups. A complete analysis of Ji(G) even for compact 
Abelian groups G would be of the greatest interest. The analysis of J((G) for general G 
and of S?i(G) for noncompact G would seem to be one of the most important problems 
now open in harmonic analysis. 

In conclusion, we remark that most of the matters discussed in this essay are 
treated in detail in a forthcoming book [14]. 
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