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ARITHMETICA TOPOLOGICA 

S. W. GOLOMB 

Pasadena 

The topology D for the positive integers is obtained when those arithmetic pro­
gressions {an + b} with (a, b) = 1 are taken as a basis for the open sets. This topo­
logy is connected and Hausdorff, but is neither regular, compact, nor locally compact. 
In the topology D, there is a simple proof of the existence of infinitely many primes, 
and Dirichlet's theorem on primes in arithmetic progressions is equivalent to the 
assertion that the primes form a dense subset of the integers. The interior of the set of 
primes is empty. 

Let Q = {qi} be an infinite subset of the primes, and let g(x) denote the number 
of members of Q which do not exceed x. Call Q rare if ^1/q,- converges and call Q 
sparse if g(x) = o (x/log x). The causal relation between rarity and sparsity is settled, 
and it is shown that a certain condition on the structure of Q implies both that Q is 
nowhere dense (as a topological subset of the integers) and that Q is sparse (in the 
purely metric-analytic sense), although neither nowhere-density alone nor sparsity 
alone implies the other. It thus becomes possible not merely to formulate prime den­
sity problems and other sieve method problems in purely topological terms, but to 
solve problems of the type treated in [8] without resort to computation. Thus many of 
the results in [8] have been improved and extended by viewing them in their topo­
logical setting. 

The topological viewpoint is useful not merely to formulate and solve traditional 
problems of prime number theory, but also to suggest problems of an essentially 
different character. Thus, one can form "Cantor Sets" of integers and examine the 
density of the primes contained therein. 

I. A CONNECTED TOPOLOGY FOR THE INTEGERS 

A topology D for the positive integers is obtained when those arithmetic progres­
sions {an +• b} with (a, b) = 1 are taken as a basis for the open sets. They form a 
basis because the intersection of two such progressions is of the same type, or empty, 
as is easily verified. Note that every nonempty open set, being a union of arithmetic 
progressions, must be infinite. 
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This topology furnishes an interesting proof of 

Theorem 1. The number of primes is infinite. 

Proof. If p is prime, the progression {np} is closed, since its complement is 

{np + 1} u {np + 2} u ... u {np + (p - 1)}, 

a union of open sets. Consider the union X = Up{ap} extended over all primes. If this 
is a finite union of closed sets, then X is closed. But the complement of X is {!}, which 
is neither empty nor infinite. Since the complement of X is not open, X cannot be 
closed, the union is not a finite one, and the number of primes is infinite. 

(A similar proof, in a stronger and very disconnected topology, was given by 
H . FURSTENBERG [2].) 

Theorem 2. The topology D is Hausdorff. 
Proof. Given distinct positive integers s and l, choose a prime p (by Theorem 1) 

which exceeds piax (s, t). Then {pn + 5} and {pn + t} are disjoint open sets which 
separate 5 and t. 

Theorem 3. The topology D is connected. 
Proof. Suppose the integers could be represented as the union of two disjoint 

nonempty open sets Ot and 02. Let {axn + bt} be a basis set in Ou and let {a2n + 
+ b2} be a basis set in O2. Let a be a multiple of at. If a were in O2, we would have 
a.~ An0 + B, where {An + B} a 02. Since (A, B) = 1, we would have (a, A) = 1, 
and hence {au A) = 1. But then {atn + bx} and {An + B} would intersect infinitely 
often, contradicting disjointness of Ot and O2. Thus all multiples of ax must belong 
to Ou Similarly the multiples of a2 must belong to O2. But then the common multiples 
of at and a2 must belong to both Ox and O2, which contradicts disjointness. 
; A proof of the connectedness of the topology Z), without reference to number 

theory, was presented by MORTON BROWN at the April 1953 meeting of the American 
Mathematical Society in New York [1]. 

Theorem 4. The topology D is not regular. 
Proof. Suppose that open coverings are given for the closed set {2n} and for the 

point {1} outside it. Any open covering of {1} not intersecting {2n} must include a 
progression {en + 1}, where e is even. That is, e e {2n}. Let {an + b} be the member 
of the open covering of {2n} which contains e, so that e = an0 + b. Since (a, b) = 1, 
we have (a, e) = 1, whereby {an + b} intersects {en + 1} infinitely often. Thus the 
closed set {2n} and the point {1} cannot have disjoint open neighborhoods. 

Theorem 5. The topology D is not compact. 

Proof. The union Up {nP — 1} extended over all primes is an infinite open cov­
ering for the positive integers. Since the omission of any progression {nq — 1} leaves 
the number q — 1 uncovered, the Heine-Borel property fails. 

Actually, the topology D is not even locally compact, because every locally com­
pact Hausdorff space is regular. For a proof of this, as well as for the more basic 
definitions of point-set topology, the reader is referred to [5]. 
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Dirichlet's theorem, which asserts that every progression {an + b} with (a, b) = 
= 1 contains infinitely many primes, has an elegant formulation in terms of the topo­
logy D. 

Theorem 6. Dirichlet's theorem is equivalent to the assertion that the primes are 
a dense subset of the integers in the topology D. 

Proof. Assume first the validity of Dirichlet's theorem. Then every nonempty 
open set contains primes, so that the primes are a dense subset of the integers. Con­
versely, assume that the primes are a dense subset. Then every nonempty open set, and 
in particular all the progressions {an + b} with (a, b) = 1, must contain primes. It is 
well known [4] that if every such progression contains at least one prime, then every 
such progression contains infinitely many primes. (In topological terminology: "If the 
closure of the primes is the integers, then the derived set of the primes is the integers.") 

Although it is quite unlikely that a complete topological proof of Dirichlet's 
theorem could be given without the introduction of powerful new ideas and methods, 
the attempt should be well worth the effort. In particular, if the proof that works for 
the rational integers should also be valid in other rings of algebraic integers (where the 
corresponding topology, based on residue classes of ideals, is introduced), the en­
richment of number theory would be enormous. Thus, the corresponding theorem for 
the Gaussian integers would imply infinitely many Gaussian primes in the progres­
sion {n + i}, and hence infinitely many rational primes of the form n2 + V a classical 
unsolved problem. 

Another familiar fact capable of topological formulation is 

Theorem 7. In the topology D, the interior of the set of primes is empty. 
Proof. If there were an open set consisting entirely of primes, there would be 

a progression {an + b} with 1 = b = a consisting entirely of primes. But with 

n0 = a + b + 1 , an0 + b = (a + b) (a + 1) , 

which is composite. 
It is interesting to consider also the topology D' for the positive integers, which 

has as a basis those progressions {an + b} with (a, b) = 1 for all n > N. (Here N is 
allowed to assume all values.) This topology may appear stronger than D, although 
it is in fact equivalent to D. Moreover, certain theorems related to Eratosthenes* 
sieve are readily seen in terms of D'. In particular, 

Theorem 8. The set of positive integers m such that 6m — 1 and 6m + 1 are 
a pair of "prime twins" is closed in D', and hence in D. 

Proof. It is known [3], [10], that the numbers m in question are precisely those 
positive integers not expressible in the form 6ab ± a ± b for any a = 1 and b _ L 
Thus the complement of our set is 

U « i { ( 6 6 ± l)a±b}> 
where each progression is restricted to a = 1, and is open because (6b ± 1, b) = 1. 
The union is open in D\ because it is a union of open sets. Thus the integers m for 
which 6m — 1 and 6m + 1 are both prime form a closed set. 
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II. RARITY AND SPARSITY 

Let Q = {q j be an infinite subset of the primes, and let g(x) denote the number 
of members of Q which do not exceed x. Call Q rare if YMQi converges, and call Q 
sparse if g(x) = o (x/log x) [7]. In this section the causal relation between rarity and 
sparsity is settled in the negative, i. e.: 

Theorem 9. Rarity is unnecessary and insufficient for sparsity. 
Proof. Four examples suffice to establish this Theorem. (The most surprising of 

these is the fourth.) 

1. The set of all primes, P = { p j , is neither sparse nor rare. (Trivial.) 
2. The subset Qrs = {/>„,} is both sparse and rare. (Trivial.) 
3. Define Qs = {qn} recursively by qx = 2 , and 

qn+i = m a x \_pn(qn)+i , Pn(n\ogniog\ogn)] • 

Since pniy) is the largest prime not exceeding y, and since pn ~ n log ny we see that 
qn ~ n log n log log n, so that 

Z — > k Y^ln 1°S n 1°6 l°g w =' oo , while g(x) ~ x\ log x log log x = o(x/log x) . 
gw 

The use of the Prime Number Theorem here can easily be replaced by more element­
ary results. (See also the last paragraph of this paper.) 

4. Let 
oo 22i~i 

Qr = V UPn(22i) + j ' 
i = l j=l 

That is, after each value x = 227 the set Qr contains the next 22 '~ ' primes. Using the 
elementary (Chebycheff) results: n(x) < ax /log x and pn < bn log n, we have, letting 
c = a log2 e + 1, 

P«C2»') + 2 a ' - < b[n(22i) + 2 2 i - ' ] log[7C (2 2 1 ) + 2 2 ' - ' ] < 

22i 

<bc— [log c + (2l - i) log 2] < k . 2 2 ' , 

where k is independent of /. 

Hence, 
j oo >,y2i — i oo i 

c?€Qr <J » = 1 2 i = l 2 

while for x = k . 22\ which includes arbitrarily large values of x, 

g(x) = g(k . 2") ;> 2 2 ' - = - ^ - log 2 > d - ^ - , 
log (x\k) log x 

for some absolute constant d > 0. This precludes g(x) = o(x/log x). 
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Thus the supposition that rarity is a stronger condition than sparsity is false, at 
least in the case of sets of primes with sufficiently irregular distribution. However, 
rarity does imply 

Hminf-il^L = 0, 
*->oo x/log X 

but this is a weaker condition than sparsity, which can be rephrased 

lim -&L =- 0 . 
x-+oo x/log X 

In some sense the intersection of the rarity and sparsity conditions is the requirement 

jc-oo X / I o g X 

A somewhat more general approach is to define a "moment-generating function" 
for Q by 

o(x>s) = Z « " s -

The rarity vs. sparsity problem then becomes one of the interrelationship between the 
asymptotic behaviors of the two "moments" g(x, 0) and g(x, 1). 

III. SPARSITY AND TOPOLOGICAL DENSITY 

Definition. Let A = {an + b} be any arithmetic progression. Define the it-mea­
sure on A by 

(0 i f(f l , fc)->l , 
" W ~ \U<p(a) if (a, b) = 1 , 

where cp(a) is Euler's function. 
(For the empty set <£, define n(<P) = 0.) 
If A and B are two progressions, so too is A n B. The formula n(A u B) = 

= n(A) + n(B) — n(A n B) may be used to extend the definition of 7r-measure to all 
finite unions of arithmetic progressions. 

Theorem 10. As a measure, n(A) is finitely additive but not absolutely additive. 

Proof. By the principle of cross-classification, 

n( U At) = Y<At) - X > ( ^ n Aj) +-... + (-\)n+i AtnA2n ... n An . 
i = l 

To show that this measure is not absolutely additive, consider the set of progressions 
A{ = {ptn}, where p{ is the i-th prime, i = 1, 2, 3, ..., and define A0 = {qn + 1} for 
any odd prime q. Although n(At) = 0 for i = 1, and though 7i(Al0) = l/(q — 1) 

00 

where q may be arbitrarily large, yet \J A{ = Z, the set of all integers, and n(Z) = 1. 
i = 0 
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Note . By the asymptotic form of Dirichlet's Theorem, the number of primes 
in a progression A = {an + b} which do not exceed x, denoted by n(x; a, b), satisfies 

n(x;a,b) , . 
l im — = n(A). 

x-oo x / l o g x 

Hence an equivalent definition for 7r-measure would be 

, v . 7l(x, A) 
7r(Af= lim - - , 

x-oo X/log X 

or even more suggestively, 
, x 7l(x, A) 

7i(A) = l im —i - , 
x-oo 7r(x) 

and this definition generalizes to any set A. 
Definition. Any set A having 7r-measure 0 will be called sparse, and any subset of 

a sparse set is also called sparse, and defined to have 71-measure 0. (When this defi­
nition is restricted to sets of primes, it clearly coincides with the definition of sparsity 
given in Section II of this paper.) 

Theorem 11. The set A will be called essentially sparse if n(Z — A) = 1. 
Essential sparsity is equivalent to sparsity. 

Proof. 
( v n(Z-A,x) n(Z,x) - n(A,x) ( n(A,x) 

n(Z — A) = lim —̂  '- = lim — - * - = hm [ 1 — v 7 7r(x) X-OO 7l(x) x-oo \ 7r(x) 

which is 1 if and only if 

7r(^) = l i m - < ^ = 0 . 
7l(x) 

Definition. Relative to the topology D, a subset S of the integers Z is called 
nowhere dense if there is no non-empty open set in the closure of S. 

Theorem 12. If S is a nowhere dense subset of Z, then S may or may not be 
sparse, and conversely. 

Proof. The empty set is both nowhere dense and sparse; the set of all primes is 
neither. 

Let {At} be the denumerable collection of all the basis sets {atn + &J. From each 
Ah pick a prime st > 2l, and let S = {sj . Then S contains at least one, and hence 
infinitely many (cf. Theorem 6) members of every non-empty open set, and is therefore 
dense in D. However, 

/ o \ 1- n(*> s) / i- l o g 2 x 

n(S) = hm v L S lim ——— = 0 , 
x-oo 7l(x) x-oo X/log X 

so that S is both dense and sparse. 
Finally, from each progression A{it is possible to remove a "small" subprogres-

sion Bt so that most of the primes of A { are still in At — Bt, and so that £f = Z — \JBt 
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is a set which is nowhere dense, yet has n(£f) arbitrarily close to 1. Care must be exer­
cised in the choice of B{ to prevent the infinite union \JBt from containing too many 
(or even all) of the primes. This can be done by assuring that the smallest prime in 13, 
exceeds 2\ along with 

/ ~ \ 1 x n(x^Bi) < :  

N . 2l log x 

for all x > 1 and suitable large N. The remaining details are left as an exercise. 
Note that the last set Sf is a kind of Cantor set. By removing smaller and smaller 

"intervals" Bt, one is left with a set which is nowhere dense, which is perfect (i. e. Sf is 
the set of its own limit points), but which has "measure" arbitrarily close to 1. This is 
an example of the way in which topological notions can be used to exhibit sets of 
primes which are more pathological than those previously studied. 

Theorem 13. If Q is a set of primes such that, with only finitely many exceptions, 
Q a Ai = {atn + b{) for arbitrarily large values of ab then Q is both sparse and 
nowhere dense. 

Proof. To show sparsity, let e > 0 be given, and pick ax so large that 

< e/4 (using cp{n) -~>oo as n -»oo) . 

There are only finitely many — say t — members of Q which do not belong to A, = 
= {atn + bi], by the hypothesis. Pick xt so large that 

1 < e/2 . 

xJlogXi 

Pick x2 so large that for all x ^ x2, 

n(x, At) < 2 s 

x/log x tpfai) 2 

Pick x0 = max (x1? x2). Then 
n(x, Q) t n(x, A{) 

— ~T~ i 

x/log x x/log x x/log X 

for all x > x0, whence 

n(Q) = lim ±1® < e 
.x->oo x / log X 

for all e > 0, and n(Q) = 0. 

To show that Q is nowhere dense, assume the contrary. Then there would be 
a progression B such that every subprogression of B satisfying the relative-prime 
condition has non-empty intersection with Q. Let n(B) = p. By hypothesis, with only 
finitely many exceptions (say t exceptions), Q cz At with n(A^) < |/?. Thus n(B — 
— A() ^ |/>, where B — A{ denotes the intersection of B with the complement of At. 
Any open progression in B — Ax (and there must be at least one) can be decomposed 
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into more than t disjoint open subprogressions, with only t members of Q available to 
be in them, contradicting the assumption that Q could be dense in B. 

An immediate application of Theorem 12 is to the improvement of Theorem 4 in 
[8], which asserts that if Pn is any particular prime factor of Fn = 22" -f 1, then the set 
{P„} has "intermediate density", a weaker condition than sparsity. 

Theorem 14. The set of all prime factors of all the Fermat numbers Fn — 22" -f 
-f 1 form a sparse set of primes. 

Proof. As shown in [8], every prime factor of Fn belongs to An = {2n + 1K + 1}. 
Since Ai => A2 => A3 =) ... mthn(An) -> 0, Theorem 13 applies, and asserts that the 
set of all prime factors of the Fn are a sparse set, and are also nowhere dense. 

Using the concepts of the present paper, Theorem 3 of [8] can also be streng­
thened. Let Q be the set of odd primes defined inductively by starting with 3eQ, and 
placing each subsequent prime into Q if and only if it fails to be congruent to 1 modulo 
any of the previously chosen members of Q. In [8] it was shown that Q has "inter­
mediate density", defined as 

l i m . n f l l g e g ' g g 5 * 1 l - - ( ) . 
x-oo x/log X 

A review of the proof, however, shows that Q must be either rare or sparse, and as 
shown in Section II of this paper, each of these conditions is stronger than the inter­
mediate density condition. 

Using very powerful analytic methods, ERDOS has recently shown [9] that 
qn ~ n log n log log n, where qn is the n-th member of Q. It is unlikely that topological 
methods will ever replace analysis in obtaining results of this depth. 
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