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PERIODIC HOMEOMORPHISMS OF THE 3-SPHERE 

E. MOISE 

Cambridge (U. S. A.) 

Let M be a triangulated 3-sphere, and let f be a periodic simplicial homeo-
morphism of M onto itself. Suppose thatfpreserves orientation and has a fixed point; 
let F be the fixed-point set off; and let n be the period off By methods and results of 
P. A. SMITH [1] it follows that Fis always a (simple closed) polygon. A well-known 
conjecture due to Smith (discussed by S. EILENBERG [2] in his 1949 report on the 
problems of topology) asserts that Fis never knotted. 

It has been shown by D. MONTGOMERY and H. SAMELSON [3] that for n = 2, 
F cannot be a simplicial standard torus knot. They showed also that if n = 2 and F is 
unknotted, then fis topologically equivalent to a rotation. 

The main result reported here is that the second of these results holds without 
restriction n = 2: 

Theorem 1. If f : M <-> M is periodic and simplicial, and preserves orientation, 
and F is unknotted, then f is topologically equivalent to a rotation. 

This result is derived from the following purely homological theorem: 

Theorem 2. Let M be a triangulation, n ot necessarily of the 3-sphere, but of 
a compact 3-manifold having the homology groups of the 3-sphere. Let f : M «-> M 
be a simplicial homeomorphism of M onto itself, preserving orientation, with period 
n and having the polygon F as its fixed-point set. Then there is a polyhedral disk Dx 

with handles such that (1) F is the boundary of Dx and (2) each two different sets 
fl(Dx),f

J(Dx) intersect only in F. 

Here by a disk with handles we mean a compact, connected orientable 2-manifold 
whose boundary is a single polygon. If Dx is an actual disk (with no handles), then for 
the case M = S3 it follows that each pair of geometrically adjacent disks 

D^f-^D,), DJ=fJ-\Dl) 

form the boundary of a 3-cell, say Ct; and the 3-cells C{ are cyclically permuted byf. 
From this it follows that fis topologically equivalent to a rotation. In fact, to deduce 
Theorem 1 from Theorem 2, we show that if F is the boundary of some polyhedral 
disk D, and the genus of Dx is positive, then this genus can always be reduced. 

These results will appear soon with proofs in a paper in the Illinois Journal of 



278 E. MOISE 

Mathematics. The proofs are by explicit geometric construction, and do not lend them­
selves to informal summary. Since the difference in date of publication will be small 
in any case, we do not attempt to give such a summary here. 
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