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ON PARACOMPACT SPACES AND RELATED 
QUESTIONS 

V. PONOMAREV 

Moscow 

In § 1, the general notion of 2I-compactness of which the paracompactness is a 
special case is considered; the characterizations of such spaces are given, using 
systems of closed sets as well as using the notion of limit points of nets. 

In § 2 it is shown that all paracompact spaces and only these spaces are limit spa­
ces of simplicial projection spectra in the sense of P. ALEXANDROFF [1] (generalized 
by A. KUROSH [2]). 

1. 21-compact spaces. Let % = {a} be any system of open coverings of a given 
space X, containing all finite open coverings as subsystem. 

We shall say that the space X is %-compact if each open covering of X has a refi­
nement a G 21. A system o = {F} of closed sets is called tangent to 21, or simply 21-
tangent, if in each a e 21 there is an element Va e a intersecting all F e o. The following 
theorem is easily proved: 

Theorem 1. In order that a space X be %-compact it is necessary and sufficient 
that each %-tangent system has a non-void intersection. 

Obviously, the system of all closed sets containing a given point x is an 21-tangent 
system which we shall denote by (x). If X is 2(-compact, (x) is a maximal 21-tangent 
system and there are no maximal tangent systems other than those of the type (x). The 
correspondence x <-» (x) is a one-to-one correspondence between the points of the 
2I-compact space X and the set E of its maximal 21-tangent systems. This correspond­
ence becomes a homeomorphism if we introduce in E a Wallman topology. 

From now on we shall suppose that 21 = {a} is a directed system (with the na­
tural ordering: a >- a if the covering a is a refinement of the covering a). 

' Take in any a e % and a set Va e a. The system ^ = {Va} thus obtained is directed 
by the directed system 21 = {a}, this system £ is called an %-thread if for any two 
Va e £, V^ e £, a Va„ e £ can be chosen with a > a, a" >*- a (in %) and1) 

We shall say that the space X has the property (K^) if for every 21-tangent system 
o = {F} the sets Va e a (having common points with all F e o) can be chosen in such 
a way as to form an 2I-thread ("the 2t-thread dual to the tangent system <r"). 

x) The brackets denote closure. 
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Theorem 2. In order that a regular space X be %-compact it is necessary and 
sufficient that both of the following conditions are fulfilled: 

(a) the space X has the property K%, 

(b) each %-thread £, = {Va} has a non-void intersection. 

It is natural to call a space %-complete if it satisfies the condition (b). 

Lemma. If £, = {Va} is an %-thread and x e f) [Kj> then all of the neighbour­
hoods Ox of the point x are among the Va.

 a 

In fact, obviously f) Va = f) [VJ; for the given Ox we take a smaller Oxx with 
a a 

[Otx] c Ox and a0 = {Ox, X \ [Oix]}; then necessarily Va = Ox. 

It follows from this lemma that the intersection of all elements of a thread cannot 
contain more than one point. 

Now the theorem 2 is proved in a few words. Let X be 21-compact, and a = {F} 
an 21-tangent system. Then f) F contains a point x0. 

Ee<T 

In any a take an element Va3x0. The system £, = {Va} thus obtained is an 
21-thread. In fact let Va e £, Va, e £ be given. Let us choose neighbourhoods Ox, Oxx 
of x so that 

[Ox] c= Va n Va,, [ 0 l X ] c 0 x , 

and take the covering ax = {Ox, X \ [Ojx]}. Take any covering a following a, 
a', <xx; then the set Va» e £, containing x and contained in some element of al5 must be 
contained in Ox; therefore 

[Va~] s [Ox] c Va n Va, ; 
q. e. d. 

Obviously the thread £ is dual to a and the space X has the property K^. More­
over, for any thread £' = {Va}, the system {[Va]} is a tangent system and the ne­
cessity of our condition is proved. 

Sufficiency: Let a = {F} be a tangent system and £ = {Va} a dual thread with 

*0 = n va = n m. 
a 

As all Va, i. e. all Ox0, intersect all Fa e a, we have x0e f) F and thus X is 21-compact. 
Eeo-

Definition. A net {x<J, x 9 e l , indexed by any directed set 0 = {S} is called 
an %-net, if every a e 21 contains an element Va such that for every Q0e 0 
there is an x# e Va with $ > 3 0 . 

Theorem 3. In order that a regular space X be %-compact it is necessary and 
sufficient that it have the property K^ and that each %-net have a limit point. 

Necess i ty : If X is 2I-compact, it has the property K^. Let {xd} be an 2l-net. 
Let us define 

F, = \_S(xr, $' ^ 3)] . 
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Since {x$} is an 2l-net, {F^} is an 21-tangent system, so that it has common point x0 

which is a limit point of {xd}. 
Sufficienty: Let o = {F} be an arbitrary 21-tangent system, £ = {Va} a dual 

thread. For every a take xa e Va\ then {xa} is a net (directed by % = {a}), and in fact 
an 21-net. By hypothesis, it has a limit point x0 which is the (only) common point of 
all [VJ . Thus by the above lemma, all neighbourhoods of x are among the Va, so 
that x belongs to all F e o and p\ F =$= 0, q. c. d. 

Fecr 

2. Paracompactness, metric and projective spectra. First of all we recall the fol­
lowing theorem, proved (but not formulated explicitly) by C. H. DOWKER (1948); an 
explicit formulation can be found in M. Katetov's Appendix to the book ,,Topolo-
gicke prostory" (Topological spaces, Prague 1959) by E. Cech. 

Theorem 4. In order that a regular space X be paracompact it is necessary and 
sufficient that for every open covering co of X there exist an co-mapping2) of X onto 
a metric space Y. If we suppose that Yis metric separable, we obtain a characteris­
ation of final compact (Lindelof) spaces. 

The proof of the first part of this theorem is straight-forward: if X allows, for 
every co, an co-mapping onto a paracompact space Y, then X itself is paracompact. 

The proof of the second part is contained in a result of C. H. DOWKER [3]. An 
alternate proof is given in the book mentioned above. 

Now let us pass to the spectral characterization of paracompact spaces. 
1. According to a classical definition of P. ALEXANDROFF, a projection-spectrum 

is a directed set I of simplicial complexes3) a, a', ... and of simplicial mappings, 
called projections; for each pair a, a' in I with a' > a there is a well defined projection 
na' of the complex a' onto a; for a" > a' > a one has 

<x" tx' cc" 
na = na na' • 

If in each complex a we take a simplex ta under the condition 

K ta' = ta , 

we obtain a so-called thread £ = {ta} of the spectrum; a thread £ = {ta} is called 
maximal if there exists no thread <f = {ta} different from £ and such that ta §; ta (that 
is to say that ta is a face of ta) for all ta. 

By definition, the maximal threads are points of the limit space S of the spectrum 

i = {«, o • 
As for the topology of E9 we define for any simplex taQ of a given a0 e I the set Otao 

consisting of all threads <f = {t'a} with t'a S ta - These sets Ota are by definition the 
basic open sets of I. It is easily seen that the set I with this topology is a Tj-space. 

2) Let co be a covering of the space X; a continuous mappingf: X -> Yis called an co-mapping 
(Alexandroff [1]), if each point y e Yhas a neighbourhood Oy such t h a t f - 1 0 y is contained in 
some element of co. 

3) A complex is meant in the classical sense, as a set oc of (abstract finite dimensional) simpli-
ces; if t e <% and / ' < t (i. e. t' is a face of t), then t' e oc. 
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Now let us consider for any simplex lao e a the set <Ptao of all points 

<f = {Qel with c0 = '-„• 

It is easily proved that the sets <Pta are closed in the topological space I. Among the 
<Ptao, the sets <Pea corresponding to the vertices ea of the complex a are the most 
important. 

For a given complex a e I9 the sets <Pea corresponding to all vertices of a form 
a closed covering cpa of the space I. 

These coverings <pa are called the fundamental coverings of the limit space I. 

Remark \. One proves immediately that the nerve of the covering cpa is a sub-
complex of the complex a. 

Now call the spectrum I complete if for every lao e a0 e E there exists a thread 
£ = {ia} with rao ^ lao. If the spectrum 

I = {a, < '} 

is complete, then the nerve of cpa is the complex a. 

Remark 2. It is easy to give a condition for the regularity of the limit space £ of 
the spectrum 

z = {«,<'}. 

Call I a regular spectrum if for any 

and a0 there exists an a el such that supposing 

T , = \e°, e2,\ G £ 
La' |*V> * * •' Ka'\ ^ *» ' 

we have 
<Pea, v ... u <S>er

a, c Ora. 
A regular spectrum has a regular limit space. 

2. All the previous notions are either those described in the classical paper [1] of 
Alexandroff, in which the definition of a projective spectrum is given, or their im­
mediate generalizations. Now we come to the main condition, which expresses that 
the convergence of the spectrum to its limit space is in a certain sense uniform. 

Definition. The spectrum I = {a, na} is called uniform if any covering of I 
by basic opan sets is refined by some fundamental covering cpa. 

The principal result of this paper is: 

Theorem 5. The limit space of any uniform {regular) spectrum is a paracom-
pact {regular) space. 

Every paracompact regular space is the limit space of a uniform regular 
complete spectrum. 

The strong paracompact spaces4) are characterized among paracompact 

4) Strong paracompact means that any covering can be refined by a star-finite one. 
20 Symposium 
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spaces by the condition that all complexes in the spectrum can be supposed star 
finite. 

Let us say only a few words about the proof of the second part of this theorem. 
If X is a paracompact (regular and therefore normal) space, then every open 

covering co of X can be refined by a locally finite canonical (closed) covering.5) These 
coverings form a directed system. Their nerves (star-finite if the covering is star-
finite) with the natural projections form a uniform regular complete spectrum I with 
the limit space S homeomorphic to X. 

Finally, let us remark that for a spectrum I = {a, 7i* } composed of finite com­
plexes (that is the classical case of Alexandroff-Kurosch with a bicompact limit 
space), the condition of uniformity fundamental in our theorem is satisfied automati­
cally. 
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) A covering is canonic if its elements are closures of disjoint open sets. 
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