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APPLICATIONS OF TOPOLOGY 
TO FOUNDATIONS OF MATHEMATICS 

R. SIKORSKI 

Warszawa 

The subject of my talk is to give a short account of applications of Topology to 
Mathematical Logic I shall restrict the discussion of the applications to the case of 
the classical two-valued logic and the intuitionistic logic only. 

The following topological notions play an important part in metamathematieal 
investigations: 

I. 1. Totally disconnected spaces. 
2. Compactness. 
3. The Baire theorem. 

II. 1. General topological spaces, in particular finite topological spaces. 
2. Algebras of open sets. 
3. Interior mappings. 
4. Strong compactness. 

The first group contains notions useful in the classical logic. The second group 
contains notions useful in the intuitionistic logic. 

Some notions mentioned above require an explanation. By a general topological 
space I shall understand a space satisfying the well known four axioms of Kuratowski. 
It is not supposed, in general, that one-point sets are closed. Consequently finite topo­
logical spaces are not discrete, in general. A space is totally disconnected if, for every 
pair of distinct points x, y, there exists a clopen set (i. e. a set both closed and open) A 
such that x e A and y $ A. 

By the Baire theorem I shall understand the theorem stating that no open non-
void subset of a compact Hausdorff space is of the first category. Usually this theorem 
is formulated for complete metric spaces. The completeness does not play any essen­
tial part in logical investigations. The Baire theorem in the above formulation is due 
to E. CECH [1]. 

It is not surprising that totally disconnected compact spaces appear in applic­
ations to the classical logic because the classical logic is closely connected with the 
theory of Boolean algebras. On the other hand, the M. H. STONE [27] representation 
theorem asserts that every Boolean algebra % is isomorphic to the field of all clopen 
subsets of a totally disconnected compact space, i. e. there exists a totally disconnected 
compact space X and a mapping 

h : 21 -» % = the field of all clopen subsets of X 
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such that h transforms the lattice-theoretical joins and meets in 31 onto set-theoretical 
unions and intersections respectively: 

h(a v b) = h(a) u h(b), h(a A b) = h(a) n h(b) , 

for a, b e 21. 

The Stone isomorphism h does not preserve infinite joins and meets in 21. More 
precisely, if 

(1) a = VreT«r m % 

(i. e. if a is the smallest element which is greater than all ar), then 

U „ T % r ) <=• h(a) 

but c cannot be here replaced by = , in general. It can be easily proved that the cor­
responding defect set 

(2) h(a) \ (JUT h(at) 

is rather small, viz. it is nowhere dense in X. Similarly, if 

(3) a = /\uTat in 21 

(i. e. if a is the greatest element which is less than all ar), then 

Ka) c HreT h(at) 

but cz cannot be here replaced by = , in general. The corresponding defect set 

(4) U „ r h(at) \ h(a) 

is also nowhere dense. 

Since the time of my talk is restricted, I shall mention only a few applications of 
Topology to Mathematical Logic. 

Consider first a formalized mathematical theory Tbased on the two-valued logic. 
For brevity only, we shall assume that Tdescribes only properties of some relations in 
a set of elements. Thus the language of the theory T contains a countable set V of 
signs x, y9 z, ... called individual variables and denoting arbitrary elements in the set 
under examination, and a finite or countable set of signs n, Q9 ... called predicates and 
denoting the relations under examination. Expressions like 

TT(X, y) , Q(X9 y, z) 

are the simplest sentences in the theory, stating that relations n9 Q hold between ele­
ments x, y or x, y9 z etc, and called elementary formulas. From elementary formulas 
we can form some more complicated formulas (i. e. more complicated sentences of 
the theory) by joining the elementary formulas by means of the connectives 

v (or), A (and), => (if..., then...) , — (not) 

and quantifiers 

VJC (there exists an x such that...) , /\x (for every x, ...) . 

21* 
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For instance, the following expressions are formulas 

(5) n(x, y) => Q(y, z, x) , (V* Q(X, y, z)) => (n(y, z) A n(z9 y)). 

A formula which does not contain any quantifier will be called open. For instance, the 
first of formulas (5) is open but the second is not open. 

We shall identify two formulas a, /? if and only if the both implications a => p and 
fl => a are theorems in T, i. e. they follow from the mathematical axioms of the theory 
Tby means of the two-valued logic. After this identification, the set of all formulas 
becomes a Boolean algebra 21. The element of 21 which is determined by a formula a 
will be denoted by |a|. The join, meet and the complement in 21 are defined by the 
equalities 

(6) |a| v |j8| = |a v j8| , |a| A \p\ = |a A p\ , - |a| = | - a | 

where, on the left side, the signs v , A , — are Boolean operations, and on the right 
side they are the logical connectives. Moreover it can be easily proved that, for 
every formula a(x): 

(7) |V, a(x)| = V, . v KJOI • K a(/i)| = AyeW |«O0| • 

These infinite joins and meets are called joins and meets corresponding to logical 
quantifiers. Roughly speaking, the examination of the theory Tcan be reduced to the 
examination of the Boolean algebra 21 just defined and consequently, by the Stone 
representation theorem, to the examination of the Stone space of 21. 

As the first serious application of Topology to Mathematical Logic I shall men­
tion the topological proof of the following completeness theorem of Godel which is 
one of the fundamental matemathematical theorems: 

Theorem I. Every consistent theory Thas a model in a countable set. 

This theorem can be formulated in the language of the theory of Boolean algebras. 
The equivalent Boolean formulation is as follows: 

Theorem II. For every formalized theory T, there exists an isomorphism h0 of 
the corresponding Boolean algebra 21 onto a field of subsets of a set X0 such that h0 

transforms all infinite joins and meets corresponding to logical quantifiers onto set-
theoretical unions and intersections respectively. 

Namely every point in X0 determines, in a simple way, a model for Tin a coun­
table set. 

Thus we have to find the set X0 and the isomorphism h0. The Stone space X for 21 
and the Stone isomorphism h are not good because h does not transform the infinite 
joins and meets corresponding to the logical quantifiers onto set-theoretical unions and 
intersections. However it is easy to correct the Stone isomorphism h to obtain the 
required isomorphism h0. For every infinite join or meet (7) the corresponding defect 
set is nowhere dense. The number of all infinite joins and meets corresponding to 
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logical quantifiers is K0. Thus the union U of all those defect sets is a set of the first 
category. Let 

X0 = X \ U, h0(a) = h(a) \ U for a e 51. 

Clearly h0 is a Boolean homomorphism. It transforms the infinite joins and meets (7) 
onto the corresponding unions and intersections. If a is a non-zero element of 21, 
then h0(a) 4= 0 by the Baire theorem. This proves that h0 is an isomorphism and 
completes the topological proof of the Godel theorem I. This proof is due to H. RA-
SIOWA and R. SIKORSKI [9], [10] (see also L. RIEGER [16], [17]). We have seen that 
the Baire theorem is an essential point in this proof. 

It is convenient to consider the set X0 just defined as a topological space, the 
class of all sets h0(|oc|), where a is any open formula, being assumed as an open basis. 
The following theorem holds: 

Theorem III. The space X0 is compact if and only if the theory Tis open, i. e. 
it has a set of axioms composed of open formulas only. 

Open theories play a special part in metamathematical investigations. Roughly 
speaking, they are the simplest, most regular formalized theories. Theorem III yields 
a topological characterization of open theories. It was proved by R. SIKORSKI [19], 
[20], [21]. A part of it Was proved, in a slight different formulation, by A. EHREN-

FEUCHT and A. MOSTOWSKI [2]. The case of the classical predicate calculus, i. e. of the 
theory with the empty set of mathematical axioms, was earlier obtained by L. RIEGER 

[16] (see also H. RASIOWA and R. SIKORSKI [11]). 

One of fundamental theorems in Mathematical Logic is the Herbrand theorem. 
There exists a simple method which associates, to every formula a, a sequence 

(8) a l 5a2 , ... 

of open formulas, called the Herbrand sequence for a. If a is given effectively, it is 
very easy to find the corresponding formulas (8). The Herbrand theorem states that 

Theorem IV. If the theory T is open, then, for every formula a, the following 

conditions are equivalent: 

(a) a is a theorem in T, 
(b) there exists an integer n such that the open formula at v ... v aM is a theo­

rem in T. 
The implication (a) => (b) can be easily deduced from the compactness of X0. 

If a is a theorem in T, then h0(\a\) -= X0. This implies, by a simple calculation, that 

h0(\<Xi\)vh0(\a2\)Kj ... = Xo-

Since X0 is compact and all sets h0(K|) a r e °Pen> there exists an integer n such that 

hoflai v ... v a„|) = fc0(KI) u ... u h0(\an\) = X0 . 

Hence we infer that ax v ... v a„ is a theorem in X0. This is the main idea of the 

proof due to R. Sikorski [20], [22]. 
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I am going to quote a few applications of Topology to the intuitionistic logic. 
The investigation of classical logic leads, in a natural way, to Boolean algebras. 

The investigation of the intuitionistic logic leads, in a natural way, to another kind of 
lattices which I shall call pseudo-Boolean algebras. By definition, a lattice is said to be 
a pseudo-Boolean algebra if 

1° it has the zero element 0, 
2° for any elements a, b, the set of all x such that a A X — b contains the greatest 

element. 
The greatest element will be denoted by a => b. The element a => 0 will be denoted 

by —a. The operations a v b, a A b, a => b, —a are the lattice-theoretical analogues 
of the intuitionistic disjunction, conjunction, implication and negation respectively. 
The discovery of the connection between the intuitionistic logic and pseudo-Boolean 
algebras is due to M. H. STONE [28] and A.TARSKI [30]. Note that every pseudo-
Boolean algebra has the unit element, viz. a => a is the unit. 

Pseudo-Boolean algebras are closely related to topological spaces. Let X be a 
topological space, and let @(X) be the lattice of all open subsets of X. Then @(X) is 
a pseudo-Boolean algebra. The lattice-theoretical join v and meet A in @(X) coincide 
with the set-theoretical union u and intersection n . Moreover 

A => B = int ((X \ A) u B), -A = int (X \ A) 

for any open sets A, B cz X. 
Every subalgebra of @(X), i. e. every subclass of ©(X) which is closed with 

respect to v , A , =>, —, is also a pseudo-Boolean algebra. Conversely, every pseudo-
Boolean algebra is isomorphic to a subalgebra of the algebra @(X) of open subset of a 
topological space X. 

Now I can explain why interior mappings play an important part in the investig­
ation of the intuitionistic logic. Let Xx and X2 be two topological spaces and let 
cp : Xj -> X2 be any mapping. We ask under what conditions the equality 

h(A) = (p'i(A), (Ae®(X2)) 
defines a homomorphism 

h : @(X2) -> @(X t). 

In order that h be a homomorphism it is sufficient and, under some natural additional 
hypotheses, also necessary that 

(9) (p~1(A) == cp~x{A) for every set A cz X2 

(R. SIKORSKI [23]). A. D. WALLACE [31] (see also R. SIKORSKI [26]) has proved that 
(9) holds if and only if cp is an interior mapping, i. e. cp is continuous and cp maps open 
sets onto open sets. Note that if cp is an interior mapping from Xt onto X2, then h is 
an isomorphism from ®(X2) into ®(Xt). 

Consider first the intuitionistic propositional calculus. The language of the 
propositional calculus contains signs p, q, ... called propositional variables which 
are symbols to denote arbitrary sentences. By joining propositional variables by 
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means of the logical connectives v , A , = > , — we obtain formulas of the propositional 
calculus. For instance, the expression 

( - ((P=>fl) A ~P)) v q 
is a formula in the propositional calculus. 

Let X be a topological space. Any formula a in the propositional calculus can be 
interpreted as a topological polynomial in the space X. For this purpose it suffices to 
interpret propositional variables p, q, ... as variables running through all open sub­
sets of X (i. e. running through all elements of @(X)), and to interpret the symbols 
v , A , =>y — as the signs of the lattice-theoretical operations in the pseudo-Boolean 
algebra @(X). This polynomial will be denoted by ocx. Values of ocx are always open 
subsets of X, i. e. elements in ®(X). We shall write ocx= X if ax assumes only one 
value: the whole space X. 

The following theorem shows the connection between the intuitionistic propo­
sitional calculus and Topology: 

Theorem V.. The following conditions are equivalent for every formula oc: 
(i) a is an intuitionistic propositional tautology (i. e. an intuitionistically true 

formula), 
(ii) ocx = X for every topological space X. 
This result is rather easy. A much deeper result is that (ii) can be here re­

placed by the following condition: 
(ii') ocx = X for every finite topological space X. 
Condition (ii') is also equivalent to (i) and (ii). Moreover, condition (ii') can be 

restricted to finite topological spaces of powers ^ n(oc) where n(ot) is an integer deter­
mined, in a simple way, by the structure of the formula a. Condition (ii') in the formul­
ation presented here is due to J. C. C. MCKINSEY and A. TARSKI [3], [4] but it is 
a topological formulation of an earlier result of JASKOWSKI formulated in another 
language. 

Conditions (ii) and (ii') contain the quantifier "for every... space". They can be 
also replaced by the following equivalent condition: 

(iii) OLX = X for a dense in itself non-void metric space X . 
This result is also due to J. C. C. McKinsey and A. Tarski [3], [4] (see also 

A. Tarski [1]). Since the implication (ii) => (iii) is trivial, in order to prove the equi­
valence of (iii) with the remaining conditions it suffices to show that (iii) implies 
(ii'). This follows from the following theorem due to J. C. C. McKinsey and A. Tarski 

[3]: 
Theorem VI. Let Xt be a non-void dense in itself metric space and let X2 be 

a finite non-void topological space. Then there exist a dense open subset X0 a Xx 

and an interior mapping cp from X0 onto X2. 
In other words: Then &(X2) is isomorphic to a subalgebra of®(X0). 
The proof of Theorem VI is rather difficult. Finite topological spaces have a 

complicated structure. For instance, they can contain disjoint open sets with the 
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same boundary, etc. Analogous complicated open sets must be constructed in X0 

when (p is defined. 

If Xx is totally disconnected, we may assume that X0 = X!. 

Now we shall discuss the case of the intuitionistic predicate calculus. The language 
of the intuitionistic predicate calculus and the definition of formulas is the same as in 
the case of formalized mathematical theories described earlier. 

Let a be a formula in the intuitionistic predicate calculus and let X be a topolo­
gical space. Similarly as in the case of propositional calculus, a can be interpreted as 
a topological (infinite) polynomial ax in X whose values are open subsets in X. The 
exact definition is a little more complicated as in the case of the propositional calculus 
and therefore it is not quoted here (for details, see e. g. A. MOSTOWSKI [6] or H. RA-

SIOWA and R. SIKORSKI [12], [13]). As previously, we shall write ax = X if ax assumes 
only one value: the whole space X. Polynomials ax were used for the first time by 
A. Mostowski [6] to the problem of verification whether a given formula is an in­
tuitionistic tautology or not. This method of verification is based on the following 
theorem: 

Theorem VII. The following conditions are equivalent for every formula a: 

(i) a is an intuitionistic predicate tautology (i. e. an intuitionistically true 
formula); 

(ii) ax = X for every topological space X. 

Conditions (i), (ii) in Theorem VII are analogous to conditions (i), (ii) in Theo­
rem V. There is no analogue of conditions (ii7) from Theorem V. The question arises 
whether there is an analogue of condition (iii) from Theorem V. First H. Rasiowa 
and R. Sikorski [12] have proved that there exists a topological T0-space Ysuch 
that the following condition is equivalent to (i) and (ii) in Theorem VII: 

(iii0) aY= Y. 

The problem arises whether Yean be here replaced by a metric space. This problem 
was solved affirmatively by R. Sikorski [23], [24], [25]. Viz. there exists a set Z of 
irrational numbers such that the following condition is equivalent to (i) and (ii): 

(iii) az = Z . 

This result was obtained as an easy corollary of the following topological theorem 
due to A. SVARC [29] (see also V. PONOMAREV [7]): 

Theorem VIII. Every topological T0-space Y with a countable open basis is an 
interior image of a set Z of irrational numbers. 

A topological space X0 is said to be strongly compact if the intersection of all 
non-empty closed subsets is not empty. Every topological space X can be turned into 
a strongly compact space X0 by adding a new point x0 so that X is an open dense 
subset of X0. By definition, 

X0 = X u (x0) . 
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As open sets in X0 we assume all open subsets of X and the whole space X0. In other 
words, we add the point x 0 to all closed subsets. Consequently (x0) is the intersection of 
all non-void sets closed in X0. 

The notion of strongly compact spaces and the trivial strong compactification 
just mentioned do not seem to be interesting from the topological point of view. 
However they play an important role in the topological investigation of the intuitio-
nistic logic For instance, they play an important part in the proof of Theorem VI. As 
second application we mention a simple topological proof of the following theorem of 
Godel: 

Theorem IX. If a disjunction a v p is an intuitionistic tautology, then either a 
or P is an intuitionistic tautology. 

The topological p r o o f of Theorem IX has been given by J. C. C. MCKINSEY and 
A. TARSKI [5] (in a slight different formulation; see also L. RIEGER [18]) for the propo-
sitional calculus, and by H. RASIOWA and R. SIKORSKI [14] for the predicate calculus. 
H. Rasiowa and R. Sikorski [14] have also proved the following theorem using the 
strong compactification: 

Theorem X. If an existential formula V.x
 a (*) *s a n intuitionistic predicate tau­

tology, then there exists an individual variable y such that the substitution a(y) is 
an intuitionistic predicate tautology. 

H. RASIOWA [8] has also examined analogues of Theorems IX and X for mathe­
matical theories based on the intuitionistic logic. In all problems concerning theorems 
IX and X the strong compactification plays an essential part. 

In my talk I have quoted only some applications of Topology to Mathematical 
Logic. Other applications and all details can be found in the monograph H. RASIOWA 
and R. SIKORSKI [15] to appear probably in the next year. 
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