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DISTINGUISHED BOUNDARY SETS IN THE THEORY 
OF FUNCTIONS OF TWO COMPLEX VARIABLES 

S. BERGMAN 

Stanford 

1. Introduction. Every simply connected bounded domain of the z-plane can be 
conformally mapped onto the unit circle. 

In analogy to mappings by functions of 1 c v. (complex variable) in the theory of 
2 (and more) c v. we consider pseudo-conformal transformations, i. e. one-to-one 
mappings of the domains1) S34 onto domain S3*4 by a pair 

(1) zk = z*k(z) , k = 1, 2 , z = (z1? z2) G S34 

of functions of 2 c v. zt,z2; z*(z) are holomorphic in S34. (The functional determinant 
D(zi> zi) = PKzi> z2)/^(zi> zij\ is finite and does not vanish in S34.) 

The problem to decide whether two given domains can be pseudo-conformally 
mapped onto each other, i. e., the classification of pseudo-conformally equivalent2) 
domains, is an important question of the theory of functions of 2 c v. 

Domains admitting the group of linear transformation z* = zk exp (icpmk), 
0 ^ cp ^ 27i, onto itself are called (ml9 m2)-domains. Here mk are integers, without 
a common factor. 

A domain admitting the group z* = zk exp (i(pk), 0 ^ cpk ̂  2n, k = 1,2 onto 
itself is called a Reinhardt domain. These domains represent the simplest class of 
(ml9 m2)-domains. Using the method of the kernel function we can decide whether the 
given bounded domain S34 can be mapped pseudo-conformally on a Reinhardt 
circular domain 9v4 and determine the mapping function of S34 onto 9ft4. 

The domains with a distinguished boundary represent another interesting sub
class of domains.3) 

In the following we shall study some properties of the boundaries of domains 
with distinguished boundary sets. These investigations yield various invariants in the 
case of p. — c transformations T, regular in the closed domain (i.e., in the case of map
pings (l) which satisfy the previously described requirements in S34). 

Distinguished boundary sets are defined using either C(S34) or L2(S34). 
C(S34) is the class of functions holomorphic in S34 and continuous in S34. 

*) As a rule the upper index is the dimension of the set. 
2) I. e. domains which by (1) can be mapped onto each other. 
3) These two classes do not exclude each other. A bicylinder is a Reinhardt domain with 

a two-dimensional distinguished boundary. 
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L2(234) is the class of functions g(z) holomorphic in 234 for which 

j^4 |g(z)|2 d(o2 <oo , 

da)z is the volume element, J is the Lebesgue integral. 
In the first case we consider on the boundary fa3 of 334 the smallest maximum set 

D, i.e. the set of boundary points t, so that to every l, t e X), a function f(z) e C(934) 
exists with the property that4) 

(2) |/(0| > |/(-)l . - * » * - * . 
In the second case we determine the maximum of |h(z)|2 of functions, which 

satisfy the conditions J«5-i|h(C)|2 dco^ = 1. 

(3) 9(C) = K(C, z)l[K(z, •?)]* 

is the function yielding this maximum and |g(z)|2 = K(z, z),5) K = K«g4, [5], p. 31 ff. 
For z -* t, where t is a boundary point of 234, K(z, z) goes (with some exceptions) to 
oo. In a number of cases it has been shown that6) lim (zt)n K(z, z) (for an appro-

z~+t 

priate n) does not vanish and is bounded. If b3 satisfies certain conditions, the order 
n equals 2, 3 or 4. See [6], chapt. I, p. 6 ff. Accordingly we introduce boundary 
points of n-th order, n = 2, 3, 4. 

Remark. The geometrical structure of the boundary and certain invariants 
(derived from the kernel-function) exhibit different behaviour at boundary points of 
different order. 

Let <P(z) be holomorphic in S3 and <P(z) = 0 have only one point common 
with 234(234 a bounded domain). If a function W(z) exists so that the p.—c. mapping 

(4) Z, = <P(z) , Z2 = «P(z) 

is schlicht (one-to-one) in 334, and the boundary fa3 of 954 at the point t is sufficiently 
regular, then t is of the third order. See [3]. If b3 n [<£(z) = 0] = @2 is a (two-dimen
sional) segment of [3>(z) = 0] and t is an interior point of @2, then t is of the second 
order. If ttvo analytic surfaces <2>(z) = 0 and *P(z) = 0 pass through t and (4) is a 
schlicht mapping of S34, then t is of the fourth order. 

2. A generalization of the Schwarz lemma in domains with the smallest maximum 
boundary. To demonstrate the advantage of introducing the notion of the smallest 
maximum boundary in the present section, a generalization of the Schwarz lemma will 
be derived. Suppose that 234 has a maximum boundary T> which is a proper part of b3. 
Further let us assume thatf(z), p(z) andf(z)/p(z) are functions of 2 c. v. which are 
holomorphic in S34. Finally let p(z) vanish at least at one point of 934, but \p(C)\ > 0 
for C e D.7) Then 

) It should be noted that the smallest maximum sets occur in the theory of rings. See [9]. 
5) In the following £34 will be replaced by £3, when it appears as a subscript. 
6) If Nis the interior normal at the point t, (zt) is the length of the projection on N of the 

segment comnecting z and t. In the case of the points of the fourth order, (zt) is the distance bet
ween z and t. 

7) If p(z) vanishes at a point of S34, min I p(Z) I = 0 for Z e b3. 
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(1) |/(z)| S I p(~)| max |/(0|/min | p(Q\ , z 6 234 . 
CfSD £*£> 

See [4]. 
The inequality (l) can be improved as follows. Let Q(Z), Z = (xu yly x2, y2)y 

zk = xk + /yfc, be a family Q of B-harmonic functions which are regular in 534. 
Further let Q„, n = 1, 2, 3, ... be subclasses of8) Q, Qn cz Qn + 1 , lim Q„ = Q. 

J1-+00 

If we approximate log |P(Z)| in the TchebyshefT sense by the Q„(Z), i. e. so that 

(2) max |log |p(z)| - Qn(Z)\ = min = m(n), Qn(Z) e Qn, 

z = (xx + fy1? x2 + i>2) , Z = (xu yt, JC2, y2) , 

then m(n) is a non increasing function of n. Therefore 

(3) lim m(n) = m(oo) 
H-*OO 

exists. Since 

(4) | & ( Z ) | g m ( l ) + rnax|log|p(-)| | 

the Q„(Z) form a normal family in 584. A subset <2„v(Z) exists, so that lim Q„v(Z) = 
= Q(0)(Z), Z e 954. Thus V v-*°° 

(5) |/(z)| ^ \p(z)\ exp [ - Q(0'(Z)] max |/(Z)|A.+"<»> . 

3. An analytic polyhedron. In order to gain a better insight in the theory of 
domains with distinguished boundary sets it is useful at first to restrict our considera
tions to the simplest type of these domains, namely to consider analytic polyhedra. 

A domain bounded by finitely many segments of analytic hypersurfaces (see 
below) is called an analytic polyhedron. 

We proceed to a precise description of domains to be considered in the following. 

Let 
(1) $2(X) = [<2>(z, X) = 0] , X = const, <P complex , 

where XG^1 = [0 ^ X ^ l ] , z = (zl5 z2), be a family of surfaces. Here 

(2) [<£(z, Xx) = 0] n [<f>(z, X2) = 0] = 0 for 0 = Xl < X2 < 1 

and 

(3a) [<f>(z, 0) = 0] n [<f>(z, 1) = 0] = 0 (case I) 

or 

(3b) [<f>(z, 0) = 0] = [<f>(z, 1) = 0] (case II) 

(Hyp. la). Here $(z, A), X e g1, z e 934, is a continuously differentiable function of the 
real variable X and of the complex variables zu z2. 254 is a sufficiently large domain, 
see below (Hyp. lb). 

8) E. g. Q is the class of B-harmonic polynomials, while Qn are real parts of polynomials 
EaVVLz\z^y v + in < n (B-harmonic = the real part of a holomorphic function of 2 c. v.). 

6 Symposium 
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Let 

(4) tf = U $2(X). 
A = 0 

Wl* is a domain bounded by segments \K of hypersurfaces fj3 introduced by (4). If m3 is 
the boundary of 9)?4, 

(5) m3 = Ui^, i3K = $2n.W* 

(Hyp. lc). The #K(Z, AK) are holomorphic functions of 2 c. v. in SO?4 (Hyp. Id). Every 
%l(XK) = S^2(XK) n m3 can be uniformized (Hyp. le). This means that a pair of con
tinuously differentiate functions h*(ZK, h)> k = 1,2, ZKG9V2(AIC), of the complex 
variable ZK, and of the real variable XK, K = 1, 2, ..., n, exist with the following 
property: 

(6) R A K : zk = hk
K(ZK, XK) , k = l,2, 

is a one-to-one mapping of the cylinder \J ?Hl(XK) onto j 3 . (Hyp. If). (U 9fv*(/lK) lies 

in the space XK, Re ZK, Im ZK.) For every fixed XK, the hK(ZK, XK) are functions of 1 c. v. 
ZK, holomorphic in ^K(XK) (Hyp. lg). 

(7) ®2
K(AK) = [0<Qo = rK(XK) < \ZK\ < 1] 

(Hyp. lh). 
Let W(k)(z), k = 1, 2, be two holomorphic functions of 2 c. v. in a bounded do

main $ 4 . By the Weierstrass preparation theorem, M4 can be covered by finitely many 
neighbourhoods ?Jt4 so that in every 9t4 

nPk 

(8) «P<->(Z) = -;-* n (zt - ^ ^ F ^ fl^z) , lc = 1,2. 
V = l 

Here .Q^ is a function which does not vanish in 9t4, npfc and fipk are integers. 
If in every 9t4 

(9a) v lp . v2p = 0 , 

(9b) 9^(z2)^^2(z2)9 

vx = 1, 2, ..., npl , v2 =- 1, 2, ..., np2 > 

then the 9(k)(z) will be called prime with each other in I 4 . 
Lemma 3.1. Let \3 be a given segment of an analytic hypersurface, which 

admits two representations 

(io) f -= U T2(X) = u &{n) 

where ~f2(X) = [>(1)(z, X)] = 0, A e 31 and Sf(ii) |> (2 )(*, n) = 0], fi e i1. Further, for 
every X and ju either <P(1)(z, X) and $(2)(z, ft) are prime with each other in every 
sufficiently small domain $ 4 => j 3 or %*(X) is identical with J?2(jtf). Then 

(11) ^(A) -= J?V(A)) 

where j"*(>l) is # continuous and monotone function of X. Compare [7] and [8]. 
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Therefore the decomposition of a segment j 3 into a sum of segments 52(A) of 
analytic surfaces is essentially unique. 

Let tK(AK) be the boundary curves of 32(AK), 

(12) iK(AK) = R A J[ |Z K | = rK(A„)] u [|ZK| = 1]} 

and il

KS(XK) = iK(AK) n%j, * * K, 

(13) iK = U ti« , 

(14) ^ = U C W n U t W , 

(15) ©K

2 = U@ K *. 
*3=1 
g*K 

Then 

2 (16) © 2 = U © 
K = - l , $ = l , K - l - $ 

is the distinguished boundary set of SO?4. © 2 is a maximum boundary. Under some 
additional hypotheses, © 2 is the smallest maximum boundary. 

4. Invariants in pseudo-conformal transformations of an analytic polyhedron. In 
accordance with the lemma 3.1 in a pseudo-conformal transformation T satisfying the 
condition (1.1) in 3D?4, the lamina 52(/lK) is mapped onto a lamina 5K

2(AK) of the do
main 2)?*4 -= T(3/?4). Indeed, T _ 1 is an one-to-one transformation of 5K

2(AK) onto 
5K(AK), 3K(^K) i s a one-to-one image of 9vK(AK), therefore 

(1) *>xK • 4 = ^*[/iK[ZK, AK), fcK(ZK, AB)] , fc = 1, 2 , 

is a one-to-one analytic mapping of 3v2(AK) onto %*2(AK). * n every 9flK(AK) we consider 
the function 

* log K(ZK,ZK) v _ v Г (7 7 1 \ _ g l Q g ^ ( Z K > Z K ) ^ _ v 

JK v-£K , Z.K, AK) - _ > A — A £ 

K i9Z,, OZ*. 

This function is invariant with respect to conformal transformations of Sft2^) onto 
itself. According to [12], [13], it assumes the value 2n on the boundary of 3t2(AK); at 
every interior point of 3t2(AK), JK > In. The function 

(2) B(z) = JK(ZK, ZK, AK) , z = PXK(ZK) , 

is defined on the boundary m3 of SO?4. B(z) is invariant with respect to pseudo-con
formal transformations T. At every point of the distinguished boundary X)2, 

(3) B(z) = 2TI , 

at every point m3 — D2, 

(4) B(z) > 2% . 
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In the case where SR2(AK) are simply instead of doubly connected, the function B(z) 
is constant on the whole boundary m3, and therefore our procedure leads to a trivia
lity. If 9v2(AK) is an n-ply connected domain, n > 2, we can construct the function 
B(z) which has similar properties as in the case n = 2. 

5. A second type of invariants. In § 4 we obtained in the case of analytic polyhedra 
invariants with respect to pseudo-conformal mappings T. In the present section we 
shall consider invariants of a different type. 

Now the hypothesis (lh) can be replaced by a weaker one, namely we assume 
here that ?Hl(XK) is an n-ply connected domain 1 = n = N <oo. 

The analytic polyhedron SD?4 is obviously a complex. The @^, see (3.16), are its 
edges. In a pseudo-conformal mapping T, the boundary m3 goes again into the boun
dary m*3 of Sft*4 = T(5)c4). The @^2 = T(@2^). Since the mapping T is one-to-one 
and continuous the Betti group of the complex m3 is preserved. 

Similarly we form intersections of three (four) segments j 3 ^ of analytic hyper-
surfaces, and we obtain a line (finite point set, respectively). Again the Betti 
groups of complexes obtained in this way are invariants with respect to pseudo-
conformal transformations. This procedure can be extended to the case of general 
domains 234 which possess the property that the kernel function K% is infinite of a cer
tain order in the sense explained in § 1. Since the functional determinant of the map
ping T does not vanish nor is infinite in 954 the order of the infinity is preserved in this 
transformation, and thus the Betti group is an invariant with respect to the transfor
mation T. 

6. Interior distinguished points. In § 5 we characterize the topological structure of 
the distinguished boundary. In analogy to this approach it is useful to apply topologi
cal methods in the study of the indicatrix of invariants at interior points of the 
domain. 

(\\ T(A - K%(z> *) T - 8l l o g K& *) 

is an invariant with respect to pseudo-conformal transformations. See [5] and [6]. 
The indicatrix9) n3(z0) of an interior point z0 of 954 is divided by the hypersurface 
J(z) = J(z0) into parts. In a pseudo-conformal transformation the topological struc
ture of the surface 
(2) £2(z0) = n 3 ( z 0 )n [ j ( z ) = j(z0)] 

is preserved. Indeed, if the development of the functions (1.1) at z0 = (z°, z°2) is 

(3) (z* - z*°) = < * . - z?) + < ( z 2 - z») + ... , 

the indicatrix will be transformed by 

(4) Zk = a™Zx + a$Z2 . 

9) n3(z0) = 2 r m « (zo)'m^n= e*'> w h e r e z0 = (*1 + <>?> x2 + &!> a n d e > ° i s Suffi" 
ciently small. 
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Since (1.1) is a one-to-one mapping, 0 < {a^a^l — a^oVI <°o, and (4) is also a 
one-to-one and continuous mapping. Consequently it preserves the topological 
structure of X2(z0). As a rule X2(z0) is a sphere. (J(z) = J(z0) intersects ^(ZQ) into 
two parts). Points z0 where X2(z0) is different from a sphere are called interior dis
tinguished points of the invariant J(z). 

In the case of a Reinhard circular domain, the center is either an isolated maxi
mum or minimum of J«g(z) or a minimax and X2(z0) is one or several tori. The center 
is the only point of this type. 

A condition necessary for a domain S5*4 to be a pseudo-conformal image of a 
Reinhardt circular domain, is the existence of an interior distinguished point z* e 25*4. 
The point z* is either an isolated maximum or minimum of J(z), or the indicatrix 
X2(z0) is one or the sum of several tori. 

If one (and only one) interior distinguished point z* (as described before) exists 
in 25*4, we determine the so-called representative domain 9v4(25*4, z*) with respect to 
z0. See [2], [11]. If the domain 95*4 is pseudo-conformally equivalent to a Reinhardt 
circular domain, the obtained domain 9v4(25*4, z*) becomes a Reinhardt circular 
domain. Thus a method has been given to decide whether a given domain 25*4 can be 
mapped onto a Reinhardt circular domain or not. For details see [3], p. 48 and [10]. 

A similar method can be used to decide whether two domains, say10) 25*4 and 254, 
can be pseudo-conformally mapped onto each other. We determine the interior 
distinguished points of 254 (95*4 respectivelly) which lie in the domain 

(5) Jt = J(z) rg J2 . 

(Here Jt and J2 are conveniently chosen constants.) The necessary conditions for 254 

to be pseudo-conformally equivalent to 25*4, is that 

(a) the number n of the interior distinguished points z(v), and those of z*(/i) in 
the domain (5) is the same; 

(b) a correspondence between z(v) and z*00 can be established so that in the 
corresponding points z(v) and z*°°, J%(z(v)) and J^(z*(tL)) have the same value; 

(c) the Betti group of X2(z(v)) and that of £2(z*°°) in corresponding points are 
the same. 

Under some additional assumptions, it is possible to show that n, 0 < n <oo, 
interior distinguished points exist in (5). 

We construct the representative domains 3t4(254, z(v)) and 3v4(35*4, z*00), 
v = 1, 2, ..., n, fi = 1, 2, ..., n. The necessary and sufficient condition for 954 to be 
pseudo-conformally equivalent to 95*4 is that domain 9v4(25*4, Z*(M)) can be obtained 
from 3t4(254, z(v)) by a linear transformation [1], p 677 and [2]. 

1 0) We assume that Jsg(z) and J%,*(z) are not constant, and that there are isolated interior 
distinguished points of J(z) = Js&(z). 
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