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CONCERNING THE WEIGHT OF TOPOLOGICAL
SPACES

A. ARCHANGELSKI

Moscow

1. The general addition formula. Let the space be represented as a sum of its
subspaces X,:
X=UX,.

Let wX, wX, be the weights of the corresponding spaces. Under what conditions
the formula
(1) wX =) wX,
does hold?

In their “Mémoire sur les espaces topologiques compacts™ [1], P. ALEXANDROFF
and P. UrysOHN raised this question for the special case when X is a bicompactum,
X = X, U X, X, closed, X, open, wX; = wX, = N,. Even this special question
remained unanswered until 1956, when Yu. SMIRNov [ 2] proved formula (1) for a local
bicompact X and a countable system of arbitrary subspaces X,, wW, = N.

Remark 1. For an arbitrary regular X formula (1) is easily proved in the follow-
ing two cases:

a) the number of the X, is finite; they are closed,")

b) the number of the X, is arbitrary; each X, is dense in X.

Definition. A space X is said to be a Borel space, if X is a Borel set (of the classical
Hausdorff type Gs,;s..., of anarbitrary countable ordinal class-number) in some bi-
compactum B =2 X.

Theorem 1. Formula (1) holds in full generality (that means for an arbitrary
number of arbitrary subspaces X, of X) in each of the following two cases:

(a) X is a Borel space,

(b) X is an arbitrary subset of a perfectly normal bicompactum.

The theorem of Yu. SMIRNOV is obviously contained in our theorem 1.

2. Theorem 2. Let f be a continuous mapping of a topological space X onto
atopological space Y.If the space Y satisfies one of the conditions (a), (b) of Theorem
1, then

wY < wX .

1) For a countable system of closed subspaces X, of a regular X formula (1) does not necessarily
hold.



A. ARCHANGELSKI 73

In the special case of bicompact X and Y this theorem has been proved by P. ALE-
XANDROFF [3].

Corollary. If under the hypotheses of Theorem 2 the space X is separable
metric, then Y is metrizable.

In this Corollary the assumption that X is separable, is essential. We have, ho-
wever, the

Theorem 3. Let Y be metric, while Y satisfies one of the conditions () or (b) of
Theorem 1. Let f : X - Y = fX be closed continuous. Then Y is metrizable.

3. One of the basic tools used for proving the above results, is the notion of a net
of a topological space X. I call the system X of arbitrary subsets M = X a net of X if
for an arbitrary point x € X and an arbitrary neighborhood Ox of this point there
exists a set M € X such that xe M < Ox.

The following obvious properties of nets are of importance:

1. Let X = U X, and X, be a net of X; then |J 2, is a net of X.

2. Let f be a continuous mapping of X onto Y. This mapping transforms any net
of X in a net of Y.

The following Lemma is fundamental for our purposes:

Lemma. Let X < B, where B is a bicompactum. Let one of the following condi-
tions be satisfied:

1. X is a Borel set (of any type Gses_)-

2. B is perfectly normal.

Suppose moreover that X contains a net of a cardinality t. Then there exists an
exterior open basis B of X with respect to B (that is a system B of open sets I’ < B
such that for any x € X and its neighbourhood Ox in B there exists a I' € B with
x € I' © Ox) the cardinality of which does not exceed .

4. The following theorems generalize the known results by P. ALEXANDROFF:

(a) If the point x of the bicompactum B forms a generalized Borel set Gs,; of
an arbitrary (not necessarily countable) class-number «, then the character of x in
the space B is not greater than the cardinality T of a.

(b) Let X be a Borel space. Then the character and the pseudocharacter of any.
point of X are equal.

The detailed proofs of the results communicated in this report can be found in my
Notes [4, 5].
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