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CONCERNING THE WEIGHT OF TOPOLOGICAL 
SPACES 

A. ARCHANGELSKI 

Moscow 

1. The general addition formula. Let the space be represented as a sum of its 
subspaces Xx: 

X = \JXX. 
a 

Let wX, wXa be the weights of the corresponding spaces. Under what conditions 
the formula 
(1) wX = £ wXa 

a 

does hold? 
In their "Memoire sur les espaces topologiques compacts" [1], P. ALEXANDROFF 

and P. URYSOHN raised this question for the special case when X is a bicompactum, 
X = X\ u X2, Xx closed, X2 open, wXt = wX2 = K0. Even this special question 
remained unanswered until 1956, when Yu. SMIRNOV [2] proved formula (1) for a local 
bicompact X and a countable system of arbitrary subspaces Xa, wWa = K0. 

Remark 1. For an arbitrary regular X formula (1) is easily proved in the follow
ing two cases: 

a) the number of the Xa is finite; they are closed,1) 
b) the number of the Xa is arbitrary; each Xa is dense in X. 
Definition. A space X is said to be a Borel space, if X is a Borel set (of the classical 

HausdorfF type Gdad..., of an arbitrary countable ordinal class-number) in some bi
compactum B 3 X. 

Theorem 1. Formula (l) holds in full generality {that means for an arbitrary 
number of arbitrary subspaces Xa of X) in each of the following two cases'. 

(a) X is a Borel space, 
(b) X is an arbitrary subset of a perfectly normal bicompactum. 
The theorem of Yu. SMIRNOV is obviously contained in our theorem 1. 

2. Theorem 2. Let f be a continuous mapping of a topological space X onto 
a topological space Y. If the space Y satisfies one of the conditions (a), (b) of Theorem 
1, then 

wY < wX . 

hold 

l) For a countable system of closed subspaces Xa of a regular X formula (1) does not necessarily 
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In the special case of bicompact X and Ythis theorem has been proved by P. ALE-
XANDROFF [3]. 

Corollary. If under the hypotheses of Theorem 2 the space X is separable 
metric, then Y is metrizable. 

In this Corollary the assumption that X is separable, is essential. We have, ho
wever, the 

Theorem 3. Let Y be metric, while Y satisfies one of the conditions (a) or (b) of 
Theorem 1. Let f : X —> Y = fX be closed continuous. Then Y is metrizable. 

3. One of the basic tools used for proving the above results, is the notion of a net 
of a topological space X. I call the system I of arbitrary subsets M c X a net of X if 
for an arbitrary point x e X and an arbitrary neighborhood Ox of this point there 
exists a set M e I such that x e M c Ox. 

The following obvious proper t ies of nets are of importance: 

1. Let X = U Xa and Ia be a net of Xa; then U £« is a net of X. 
a a 

2. Let / be a continuous mapping of X onto Y This mapping transforms any net 
of X in a net of Y 

The following Lemma is fundamental for our purposes: 
Lemma. Let X c= tB, where B is a bicompactum. Let one of the following condi

tions be satisfied: 
1. X is a Borel set (of any type Gdao ). 
2. B is perfectly normal. 
Suppose moreover that X contains a net of a cardinality r. Then there exists an 

exterior open basis 95 of X with respect to B (that is a system 95 of open sets T c= B 
such that for any xeX and its neighbourhood Ox in B there exists a F e 95 with 
x e T _= Ox) the cardinality of which does not exceed x. 

4. The following theorems generalize the known results by P. ALEXANDROFF: 

(a) If the point x of the bicompactum B forms a generalized Borel set Goa3 of 
an arbitrary (not necessarily countable) class-number a, then the character of x in 
the space B is not greater than the cardinality x of a. 

(b) Let X be a Borel space. Then the character and the pseudocharacter of any, 
point of X are equal. 

The detailed proofs of the results communicated in this report can be found in my 
Notes [4, 5]. 
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