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CATEGORY, BOOLEAN ALOEBRAS AND MEASÜRE 

Do Maharam 

University of Rochester 

Rochester, No .Yo, Uo So A0 

Introduction 

It should be said at once that the "category" in the title 

refers to Baire category* A topological measure space X will have 

three naturally-arising complete Boolean algebras: the algebras d (X) 
of regular open sets, dQ(X) of Borel sets modulo first category 
sets, and <dAX) of measurable sets modulo null sets. While A (X) in m. 
is obviously the algebra of greatest interest to analysts, A(X) 
(the "category algebra" of X in the terminology of Oxtoby [10]) is 

also of considerable interest to thenu It turns out, however, that 

ACW does not behave very well (under product formation, for in­

stance) unless X is "nice", in which case A AX) is the same as 

dr(X). Thus it pays to prove general theorems about the better-be­

haved dr(.X) rather than dc{X), even though one may be more inte­

rested in the latter* 

Accordingly we begin by discussing J p̂, in § 1, In § 2 and § 3 

we consider dc and dm respectivelyo In §§ 4-6 we compare and con­

trast the behavior of d- and dm with respect to problems con-
c m 

ceming liftings, completions and mappings from representation spaces© 

Finally in § 7 we apply some of the results of previous sections to 

construct a "completion" for C(X)o The unifying thread connecting 

these topics is simply that they have arisen in the course of the 

author's recent worko Much of what follows may well be known, but 

(apart from the references given below) I have not found most of it 

in the literature• 

I am grateful to A# H. Stone for some helpful discussions. 

I* The regular open algebra 

For an arbitrary topological space X we write d (X) for the 

family of regular open subsets of X; this (ordered by set inclusion) 

is well known to be a complete Boolean algebra, the supremum of a 

family of regular open sets being the interior of the closure of their 

union© (The infimum of a finite number of regular open sets is their 

intersection*) We note that every complete Boolean algebra d arises 
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as the regular open algebra of some (compact, Hausdorff, extremally 

disconnected) space X - namely, the Stone representation space of «s-£, 

which we shall denote by R(j£)0 (See [13, p. 117].) 

We say that two spaces X , Y are "regular open equivalent",and 

write X ~ Y, to mean that Jt• (X) and st• (Y) are isomorphic. Thus, 

for example, X ~, R(jz r̂(X)) for all X 0 Oxtoby [l(5\ has given a 

method for constructing all spaces Y for which X ~ Y; but it is 

(inevitably) not easily applied in particular cases - for, from the 

above remark, an effective method here would imply the classification 

of all complete Boolean algebras. However, Oxtoby obtains a striking 

consequence (though it is easily proved directly): 

(1) If D isa dense subset of X , then D ~r X 0 

As this shows, r-equivalent spaces can be very different topo-

logicallyo Thus, for example, if X is a Tychonoff space, then X ~ 

/3x • Again, let K denote {o} u {n"1: n e N } , where N is the set 

of positive integers; then K ~ /!?N (because both have dense subsets 

homeomorphic to N), despite the disparity in their cardinals, and 

despite the fact that both are compaeto 

However, r-equivalence does preserve some topological proper­

ties*, The following instances were obtained jointly by A0H0 Stone and 

myselfo First, the "density character" <T(X) is defined as usual as 

the smallest cardinal of a dense subset of X « Define the "dense den­

sity character" ^SiX) to be the smallest cardinal d such that 

every dense subset of X has a dense subset of cardinal <&• (Clearly 
cf(X) < <T<T(X); there need not be equality©) Then: 

then <F(X) * <5*(Y)0 

and X, Y are compact Hausdorff, then<8(X)«- <T<5"(Y). 

Y are non-empty separable metric spaces (or, more 

generally, are regular T, first countable spaces) without iso­

lated points, then X ~ Y o 

For X and Y , in (4), will have dense subspaces homeomorphic 

to the space Q of rationals, as follows from [12]0 Note that (4) 

applies, for example, to the Sorgenfrey line and planeo 

To formulate a more inclusive result that allows for isolated 

points, write CT(X) «- the set of all isolated points of X , @(X) * 

* X - Cl( J(X))0 Note that the isolated points of a regular T^ space 

X are precisely the atoms of *#r(X), and that ©(X) is precisely 

the complement, in ^ r(X), of their supremunu Hence a regular open 

(2) IЃ x ~ г Y 

(3) i f x ~ r Y 

(4) I f X anđ 



126 

equivalence between X and Y induces a one-one correspondence 

between J(X) and J(Y), and also a regular open equivalence be­

tween 9(X) and 9(Y)« Conversely, we have (taking the metrizable 

case for simplicity of statement, and writing [E| for the cardinal 
of E ): 

(5) If X and Y are separable metric spaces, and if | J(X)| » 

* 1J(Y)| and 9(X), 9 (Y) are either both empty or both non­

empty, then X ~ Y • 

For, as in (4),9(X) and 0(Y) will have ho me o mo rp hie dense 

subspaces, and these, together with <7(X) and J(Y) , provide re­

gular open equivalent dense subspaces of X and Y , to which we 

apply (1). 
A fairly straightforward argument will also prove: 

(6) If X^ ~p YK (for all A e A) then TTA XA ~p TT* Ya. 

From this and the foregoing we see that, for example, if k is 
k k k k k any uncountable cardinal, the spaces 2 , N , R , I , (/W) are all 

regular open equivalent* 

Another way of looking at these results comes from the fact 

that in these cases (and some others) it is possible to give fairly 

simple characterizations of the Boolean algebras **# (X). For instance, 

if X is as in (4) - we may as well say X » I , the unit interval -

then St-r(X) is characterized, to within isomorphism, as being a com­
plete non-atomic Boolean algebra with a countable ^-basis (see [l9 

p« 177] )• From this a (more complicated) characterization of jt- (I ) 
can be derived* Of course, if X has a dense discrete subset D , 

jf (X) is isomorphic to the algebra @ (D) of all subsets of D, for 

which characterizations are also known [14] • And in (5), J#r(X) is 

characterized (if 0(X) j* 0) as the direct sum of M-^/Ll) and^(J(X))0 

Finally we mention the easily verified fact: 

(7) If f : X -> Y is a continuous open surjection, then f~ gives 

an isomorphism of J&p(Y) onto a complete subalgebra of j£ (X)# 

2o The category algebra 

Again let X be a topological space, $ its family of Borel 

sets, <? its family of sets of first category (in X ) c Let $> + & 
denote the family of sets differing from Borel sets by sets of first 

category* The "category algebra" ̂ e(X) is defined to be the quotient 
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algebra («® + *6 ) / <g . As is well known, there is a natural homo-

morphism f : St• (X) ~> «^C(X), which is an isomorphism if, and only 

if, X is a Baire space (that is, no non-empty open subset of X is 

of first category in itself - or, equivalently, in X ). We define 

X *- Y to mean that «^(X) and tf-AY) are isomorphic. Thus, for c c c 
locally compact Hausdorff spaces, and for complete metric spaces, 
irf (X) * jz£ (X) , and ~ coincides with " . r c c r 

In general, there is no implication between ~c and ~ « For 

example, Q ~r E , by 1.(4), but jfQ(Q) * {o} ̂  ^c(R)oAgainf {0} ~CQ, 

but ^r(f0}) ̂  J#r(Q)« Nevertheless there is a sense in which the 

category algebra is reducible to the regular open algebra (and ~ 
„ c 

to A* )• For, given a space X , the union U of all its open sets 

of first category is, by a theorem of Banaeh [6, p. 82], also an 

open set of first category. Put X* -= X - U*; then X* is a Baire 
space, and ^ ( X ) is isomorphic to J£ (X*) » A_(X*). c c r 

This shows that the assumption we shall usually make, when 

studying the category algebra, that the spaces involved are Baire, 

is not an enormous one. It enables us to transfer the results of the 

previous section to irf and ~ • for instance, lo(l) says that if D 

is a dense subset of X , and both D and X are Baire spaces (it 

suffices that D is Baire), then D ~c X e Of course,lo(3) applies 

to ~ as it stands. Note that the analogue of lo(6) ia complicated 
c 

by the need to require that the product spaces too are Baire sets, 

which in general they need not be ([ll] , [l6])„ 

Not every significant property of ~ arises as a special 
c 

case of one of ~ . A topological space X is said to be "residu­

ally Lindelof" if every open cover U of X has a countable sub­

system U-p U2, ..., such that X - ^ ^ Un is of first category 

(see [5] )© Say that X is "hereditarily residually Lindelof" if 

every open subset of X is residually Lindelof. Then we have: 

(1) Suppose X and Y are Baire spaces and X ~ Y • Then if X 

is hereditarily residually Lindelof, so is Y • 

(More generally, an analogous definition can be given for "he­

reditarily residually (oC-/3) compact", and the analogous result 

will hold.) Thus, for instance, every open subset of R(«#-(I)) will 
c 

be residually Lindelof. Note that the analogue of (1) for not neces­

sarily Baire spaces such that X ~p Y would be false - for instance 

when X « Rxj) and Y » Q«D with D an uncountable discrete space* 
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3. The measure algebra 

Now assume that the topological space X also has a finite (or 

6 -finite) regular Borel measure ft ; that is, ft is a non-negative , 

countably additive measure defined on the family $ of Borel sets of 

X , with the property that ^t(B) « inf (<*(G) : G is open and G z> B} 

for each B € (B. Put 71 - {E C X : there exists Be© such that B.oE 
and (*(B) * o}* Then {i extends in the obvious way to the family 

fB + 71 of sets that differ from Borel sets by members of 7L * We put 
^m * ^ ̂  + ^ )/W# This too is a complete Boolean algebra, and it m 
presents some analogies with j-£ • For instance, we can without much 

c 

loss require that ^-(G) be positive for every non-empty open set Gf 
by replacing X by the complement of the union of all open sets of 

measure 0 (this union is of measure 0 because, since (ft is ^-fi­

nite, J# satisfies the countable chain condition). This would be 

the analogue of replacing X by the Baire space X* in the previous 

section* Nevertheless there are some sharp differences between jt on 

the one hand, and j#c and J4- on the other• Like M , j# can hardly 

be expected to have a simple explicit structure theory, for that would 

amount to a structure theory for all eomplete Boolean algebraso But 

A has a reasonably satisfactory structure theory (independent of 

the topological assumptions), as follows* Write X ~m Y to mean that 

M (X) and c#m(Y) are isomorphic* Then [7] given X we have X ~ Y 

where Y is the discrete union of countably many measure spaces, 

each of which is either an atom or (to within a constant sealing fac­

tor) a product I of copies of the unit interval I , with product 

Lebesgue measure* 

Another difference is that J4- has the property (a consequence 

of the regularity of ft and of Urysohn's Lemma): 

(1) If X is normal (qua topological space), each measure class 

contains a Baire set* 

(Here, as usual, the Baire sets are the *>-field generated by the 

zero-sets*) The analogue of (1) for Sf. is false, in general, even 
c 

for compact Hausdorff spaces, as is shown by the following example 

(pointed out to me by A. H* Stone)* Take X to be the usual space 

of ordinals < co-̂ , and split the non-limit ordinals into two com­

plementary eofinal sets, say E and F • Both E and F are open, 

hence Borel; but neither can differ from a Baire set by a first ca­

tegory set* 

Nevertheless, in every produet of separable metric spaees (I , 
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for instance) it can be shown that every regular open set i£ a Baire 

set; thus in this case each category class (of a Borel set modulo 

first category) does contain a Baire set. It would be interesting to 

know (a) for what spaces every Borel set differs from a Baire set 

by a set of first category, (b) for what spaces all regular open sets 

are Baire (or, more specifically, are co-zero)o 

We observe that, in ^ (X), each category class a contains a 
c 

largest open set G(a) (namely, the union of all open sets in the 

class) and a smallest closed set F(a)0 If X is a Baire space, G(a) 

is the unique regular open set in a , and F(a) is the unique re­

gular closed set in a , and we have F(a) = Cl(G(a)),G(a)= Int(F(a))0 
The analogue for v^m(X) fails; in general, a measure class a will 

contain neither an open set nor a closed set0 However, if the measure 

class a contains an open set, it contains a largest one, say G^(a), 

and we call a an "open class"0 Similarly a "closed class" a is 

one that contains a closed set, and hence a smallest closed set, say 

F,(a)0 The "ambiguous classes" are defined to be those that are both 

open and closed. (This notion has been considered independently by S« 

Graf, in unpublished work0) If we assume (without essential loss, as 

remarked above) that each non-empty open set in X has positive mea­

sure, then we have F-L(a) * Cl(G1(a)) and G-^a) * Int(F1(a)) for 

all ambiguous classes a , in analogy with the situation in ^C(X) » 

We shall make use of the ambiguous measure classes in § 6 below* 

4. Liftings 

Suppose £ is an arbitrary Boolean algebra, and Cf is an arbit­
rary ideal in *£* • Let ji be the factor algebra % /J • A "lifting" 

of & is a homomorphism h of St- into % (qua finitely additive Boo­

lean algebras; h need not preserve infinite operations, even if 

they are available), such that h(A) <a a for all B e A . Suppose 

in particular that € is an algebra of subsets of a space X ; then 

a "strong lifting" is one with the property that whenever G e. % 
is an open set in X with g (say) as its class mod J , then h(g) 

is an open set containing G • 

The following theorem seems to be generally known, though I 

have not seen it in print in exactly this form« It follows easily 

from a theorem of Graf [4] ; and independent, unpublished proofs have 

been obtained by J* P. B0 Christensen and by myselfo 
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(1) I f X i s a Baire space, the category algebra sf (X) 
( & + <? )/ f? always has a strong l i f tingo c

ч 

The proof of (1) is basically a Zorn's Lemma argument, taking 

the representative h(a) to be intermediate between G(a) and F(a), 

in the notation of the previous section
0
 It is (so far as I know) an 

open question whether one can always take h(a) to be a Borel set* 

Analogously, «J#
m
 = ( $ + 71)/ 71 always has a lifting [8]; the 

roles of G(a) and F(a) in the preceding are now taken by the sets 

of upper and lower density* Again, it is (so far as I know) an open 

question whether there is always a strong lifting for *#
m
 (say if X 

is compact Hausdorff), assuming of course that the measure of every 

non-empty open set is positive* Perhaps the study of the "ambiguous 

classes" of § 3 may throw some light on this* 

In the same order of ideas, we can ask under what conditions an 

automorphism h of <& = %/J , where 1? is an algebra of subsets of 

X , can be "realized" by a suitable point-transformation f : X -* X 

(so that h(a) is in the class of f(£) for every £ in the class 

a )o We are concerned here with the cases rf- « jf-AX) or ^wl(X)oEven 
c m 

for these, easy counterexamples show that X will have to be very 

special; "compact Hausdorff" is not enougho However, Choksi has shown 

[2] that when X is a compact Hausdorff group, then every automor­

phism of ^mW can be realized by a (both-ways measurable) bisec­

tion of X onto itselfo On the other hand, not every automorphism of 

^ ( C ) , where C is the Cantor set, can be realized by a ho me o mo r-

phisnu The following provides an exampleo Choose a 2-sided limit 

point oC e c , and put 
A « [0,oCjnC , B = ZoCf l]nC , U = [0, 1/3] n C , V * £2/3, l]nCo 
Then ^(U) « s&AV) and «#„(A) « ^ ( A ) are isomorphic, and ^ ^ V ) , c r c r c 
ji.(B) are isomorphic; and these isomorphisms combine to give an 

automorphism of c# (C) that takes the class of U to the class of c 
A * If this could be realized by a homeomorphism h , then h(U) and 

A would be regular closed sets in the same category class, and would 

therefore coincide; but h(U) is open, and A is not. It can be 

shown, however, that every automorphism of *&Q(G) can be realized by 
a homeomorphism of a dense G<$- subset of C onto itselfo This 

answers a question asked me by So Kakutani, in conversation*.. I hope 

to publish the proof elsewhere*' 
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5» Completions 

Let 9* be an arbitrary Boolean algebra; consider its represen­
tation space R(in, and put :^*= J# (R(^)) (*** .(R(#*)) )• Then 

c r 

§**, qua finitely additive algebra, is a subalgebra of the complete 

algebra <-?*"* (that is, the natural embedding of S*"* in 9'* preserves 

finite infs and sups, but not in general infinite ones, even when 

they are available)• Roughly speaking, :3T* is the smallest complete 
algebra containing 5^ in this sense; this is the content of the fol­
lowing theorem, which follows easily from one in [13, p* 141] : 

(1) If G is an isomorphism (finitely additive) of W into a com­

plete Boolean algebra ^ , then there is a unique extension of 

S to an isomorphism ®* of 5*~* onto a (finitely additive) 
subalgebra of ^ • 

(Here ®*{ $^*), though itself necessarily a complete algebra, is 

guaranteed only to have its finite operations agree with those of ̂ o) 

Now suppose (K is a finitely additive (non-negative, finite) 

measure on ^ . Then (i extends to a countably additive measure on 

the family & of Borel sets of R(^); and the corresponding measure 

algebra ^ is a complete Boolean algebra, to which (1) applies* This 

(with some elementary considerations) proves: 

(2) /it has a unique extension to a finitely additive measure /ft* 

on ~̂*; further, (&* is reduced (that is, vanishes only for the 
zero element) if, nad only if, ft is© 

It follows, for example, that 

(3) there exists a finitely additive, finite reduced measure on 

jf• {I ), where k is an arbitrary infinite cardinal* 

For ^ (Ik) « j-r\(2k) by l.(6). Let & denote the finitely ad-
k ditive algebra formed by the open-closed sets in 2 © The restriction 

of the usual Lebesgue product measure to $* gives a suitable ft to 

which (2) applies* Here R(^) * 2k, and therefore ^*« «^(2k)* 

Note that ^ c ( * ") does not carry a countably additive reduced, 

finite measure [1, p* 186]0 
It would be good to have a structure theory for finitely addi­

tive measures similar to that (described in § 3) for eountably addi­

tive ones; but this will not be easy* One conjecture might be that 

such a finitely additive measure algebra - say with a reduced, non-

atomic, finite measure p- - might be isomorphic to a direct sum of 
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terms of the form 1^(2*), each with a suitable (finitely additive) 

measure* Unfortunately this id false, because it can be shown that 

this would imply that the "density measures" on ^(N) (see C 9 J ) 

would have liftings; and they don'to 

60 Spaces as continuous images of representation spaces 

Let X be a compact Hausdorff space, and denote by X the re­

presentation space R(^C(X)) (« R(i .*r(X)) ). Gleason has observed 

[3] that the natural isomorphism between &AX) and *&JX) can be 

realized by a continuous surjection & : X -> X # In fact, one can 

define, for each oC e X (so that 06 is an ultrafilter on jdt (X) ) 
c 

(0(<2)} « D {F(a) : a £ £ } , 

where (as in § 3) F(a) is the smallest (regular) closed set in the 

class a € <^e(X) . Of course, it has to be checked (among other 

things) that this intersection really is a singleton* 

An analogous theorem holds for the measure-algebraic case* Sup­

pose ft is a measure on X , as in § 3 above, and suppose further 

that X is compact Hausdorff and that every non-empty open subset of 

X has positive ft -measure* The ambiguous measure classes (defined 

at the end of § 3) form a finitely additive subalgebra 9* of x9f * Put 
X* m R(9"); the measure (K may then be regarded as defined on the 
open-closed subsets of X*c It can be extended, in a standard way, to 

a countably additive measure {ft* on the Borel sets of X*0 

Theorem* There is a continuous sur.iection ®Q : X*̂ > X that realizes 

an isomorphism between (X*, p?) and (X, fit) • 

In fact, one can define {0o(oC*)} «fi {
Fj(a) : a £<*>*]> where 

F1(a) is the smallest closed set in a e ^ m(X) . 

This theorem provides a relatively simple proof of a theorem of 

C Ioneseu Tulcea [15, p* 169] • Still assuming X compact Hausdorff, 

and that fit is positive for non-empty open sets, put X* * R ( ^ (X))# 
As before, the measure ft on X then gives a finitely additive mea­

sure on the open-closed subsets of X , and we extend this to a coun­

tably additive measure (*&' on the Borel subsets of X** The theorem in 

question asserts that (under the above hypotheses on X and (*> ) 
there is a continuous measure-preserving surjection @':(X#,(jt')-»(X,tK)# 

To see this, note that there is a natural continuous map f :X*-* X*"; 
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this follows from the fact that X#« R( »#m) and X* » R(#~) where 

& is a (finitely additive) subalgebra of & © Now take ©'- ®0 °£ ; 

it is not hard to verify that this works© 

7. A completion for C(X) 

We use C(X) , as usual, to denote the partially ordered linear 

space of all continuous real-valued functions on X . C(X) is also, 

of course, a ring; but we are more concerned with its linear proper­

ties© Suppose that X is compact Hausdorff, and let G be the Gleason 
map from X « R ( ^ (X)) to X © Then 0 induces a linear-space iso-

morphism & : C(X) -*• C(X) ; and it is easy to see that 6 is also an 

order-isomorphism and a ring isomorphism© Now C(X), qua partially or­

dered set, is conditionally complete; that is, every bounded subset 

of C(X) has a least upper bound© (This follows from the fact that X 

is extremally disconnected©) Further, the image 0 (C(X)) can be 

shown to be order-dense in C(X) (one first shows that if f e C(X) 

is a characteristic function then there exists g e C(X) such that 

0 ^ 0*(g) -> f )• Conversely, if f : C(X) -* L is an arbitrary or­

der-preserving linear-space isomorphism into a conditionally complete 

partially ordered linear space L , it can be shown that there is an 

order-preserving linear-space isomorphism <p : C(X) -> L such that 

£ o 0*-x yr # Thus, in a reasonable sense, C(X) is the smallest con­

ditionally complete partially ordered linear space containing C(X)© 

If X and Y are compact Hausdorff spaces, and X ~• Y , then 
.•» *w c 

X a Y , so that C(X), C(Y) will have the same "completions", in the 

above sense© It would be interesting to know whether the converse is 

true© 

Essentially the same construction can be applied to all com­

pletely regular T, spaces X (not necessarily compact)© We replace 

C(X) by the subring C .(X) of all uniformly continuous bounded 

functions (uniformly continuous in the uniformity induced by the fi­

nite open covers of X )© Then Cub(X) * C(/3X), and we apply the 

previous considerations to /3X © Since ^r(X) « J*r(/2X) = i^c(/3X), 

the completion of Cub(X) will still be C(X) where now X -

= R(j*r(X)). 

Returning to the compact case, we note that the function space 

C(X) can be described more directly in terms of suitable classes of 

functions on X • Let D(X) denote the set of all (real-valued) 

functions that are continuous and bounded (and defined) on residual 
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subsets of X . Identify two functions in D(X) if they agree on a 

residual set. This produces a partially ordered linear space 5(X)o 

Theorem. If X is compact Hausdorff. then C(X) * D(X) , to within 

a natural isomorphism. 

The isomorphism here is such that, for each f € C(X) , the 

class f (of f mod first category) in D(X) corresponds to geC(X) 

where g * f o & 9 & being the Gleason map. The proof depends on 

the fact that, because of the extremal disconnectedness of R(«# (X)), 

each real-valued function on X that is continuous when restricted 

to a residual set, is equal (mod first category) to one that is con­

tinuous on all of X o 

It can be shown that, if X is compaet and Hausdorff and satis­

fies the countable chain condition (iD eo, has no uncountable family 

of pairwise disjoint open sets), then D(X) is identical with the 

set of all bounded "analytically representable" functions, modulo sets 

of first category. (The analytically representable functions consti­

tute the smallest family containing the continuous functions and 

closed under (pointwise) sequential limitso) The countable chain con­

dition is not superfluous here, as is shown by essentially the same 

example as in § 3© 
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