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SQME RECE APPLICATIONS OF ULTRAFILTERS TO TOГОLOGY 

W. W. Comfort 

Wesleyan University 

Middletown, Connecticut, U.S.A. 

The three theorems given here hardly exhaust the applications of ultrafilters 

on Ü) to topology, of course - indeed, they barely scratch the surface. I have 

selected them for discussion at this symposìum because (in my judgement) they are 

unusually elegant and pretty results and because they share in common this 

feature: neither the hypotheses nor the conclusion of these theorems mention 

ultrafilters, but ultrafilters on ш play a crucial role in each of the proofs 

given here. 

These proofs are due to the workers who are identified below. They have 

circulated informally among aficionadoes, but they have not yet appeared in 

printed form. I am grateful to these mathematicians for authorìzing and 

encouraging both this brief exposition of their work and the more detailed 

treatment anticipated in my forthcoming account [5]. 

Sl. Notatгon and Termѓnology. Throughout these remarks, by a spaoe we 

mean completely regular, Hausdorff space. We denote by u) the least infinite 

cardinal. The symbol a denotes an (arbitrary) infinite cardinal and the 

discrete topological space of cardinality a. For X a space we denote by ЗX 

the Stone-Cech compactification of X. As is well-known (see for example [12], 

[6]), 3(a) may be identified with the space of ultrafilters on a topologized 

so that {{p є 3(a) : A є p} : A c a} is a base for the closed sets; the 

inclusion a c 3(a) is effected by identifying the element £ of a with the 

principal ultrafilter (Ac a : £ є A}. 

If X and Y are spaces and f is a continuous function from X into Y, 

we denote by f that (unique) continuous function from ЗX to ЗY such that 

f c f. (It may be argued that since f[X] C Y for many spaces Y, the function 

f is not well-defined. We hope that in each case our intention concerning Y 

will be clear; in most cases Y will be taken compact, so that f[X] c Y.) 

For a >_ o) we define 

U(a) = {p є 3(a) : |A| = a for all A є p}, 

and we note that U(ш) = З(Ш)^Ü). 
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§2. A Theorem of Frolik and Kunen. 

A subset A of a space X is said to be C*-embedded in X if for every 

continuous function from A to the space [0,1] (equivalently: to a compact space) 

there is continuous function g on X such that f c g. 

We state the theorem of Frolik and Kunen. 

2.1. Theorem. Let X be an infinite compact space in which each infinite, 

discrete subspace is C*-embedded. Then X is not homogeneous. 

Remarks Concerning the Proof. Suppose we can show that there are 

p , q e U(u>) such that for every f e w we have f(p) 4 °L ai-d ffa) 4 P* 

Arranging the notation so that 3(u>)c X, we claim that if h is a homeomorphism 

of X onto X then h(p) 4 q- Indeed if h(p) = q then one of these four 

events occurs: q e (h[w] /I w)"~ ; q e (h[w] f\ U(u,))~~ ; p e (h" [ID] n a))""; 

p e (h" [a>] H U(a))) . In the first case there is f e w SO that (f agrees with 

h on h" [h[o>] C\ a>] e p and) f (p) = q; in the second case there is a one-to-one 

function g from u> to U(a>) such that g[u)] is discrete and g agrees with 

h on h" [h[o)]n U(OJ)], and hence (as is easily shown) there is f e w such that 

f (q) = Pi "the third case is similar to the first, and the fourth to the second. 

To complete the argument, it remains to show that there are p , q e U(w) 

such that if f e OJ then f (p) 4 q. and f (q) 4 P. This is a recent result of 

Kunen [191, recorded also in [6] (Theorem 10.4) and [5], and we shall not repeat 

it here. Those portions of the argument outlined above had already been supplied 

by Frolik [8], [9], [10] en route to a number of elegant non-homogeneity results 

(including the statement that U(OJ) is not homogeneous). 

We record some consequences of Theorem 2.1. (A space is said to be 

extremally disconnected if the closure of each of its open subsets is open. A 

space is an F-space if each of its cozero-sets is C*-embedded.) 

2.2. Corollary. Let X be an infinite, compact space which satisfies one 

of the following conditions. Then X is not homogeneous. 

(a) X is an F-space; 

(b) there is an extremally disconnected space Y such that X C Y; 

(c) there is a > w such that X C 3(a); 

(d) there is a locally compact, o-compact space Y such that X = 3Y^*Y. 

Proof, (a) It is easy to show that every countable, discrete subspace of 

an F-space is C*-embedded. It is known, more generally, that every countable 
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subspace of an F-space is C*-embedded (see [12] (Problem 14N) or [6] (Lemma 

16.15(b))). 

(b) 3Y is extremally disconnected, hence an F-space. Since X is 

C*-embedded in BY, X is itself an F-space and hence (a) applies. 

It is clear that (c) => (b). 

Gillman and Henriksen [11] have shown that (d) => (a). An elegant proof, 

due to Negrepontis, is given in [6] (Lemma 14.16). 

The proof of Corollary 2.2 is complete. 

We note that Theorem 2.1 was announced (for compact, extremally disconnected 

spaces) in an editorial footnote appended to [7]. 

2.3. A Question. Let a >_ co, and let C(a) denote the set of all cardinals 

Y for which there is S c U(a) such that 

(1) |S| = Y , and, 

(2) if p , q e S and p -f q, and if f e a , then f (p) =f q and 

?Cq) 4 P. 

As indicated above, Kunen [19] has shown 2 e C(OJ). In fact, Kunen has 

shown (without any special assumptions concerning any cardinal numbers) that 

2 a e C(a). This result suggests the following questions. 
9 a ? a 

Is (2a) e C(a)? Is sup C(a) e C(a)? Is 2 = sup C(a)? Is 2 e C(a)? 

It is shown in [6] and [5] that the answers are affirmative for all a such 

that a+ = 2 a or (2 a) + < 2 2 . 

§ 3. A Theorem of Ginsburg and Saks. 

We denote by {X. : i e 1} a set of non-empty spaces, for 0 =f J c I we 

write XT in place of ]T- T X-> anc* we denote by irT the projection from 
J 1£J 1 J 

X onto XT. 

We say that a space X is countably compact provided that for every f e X 

there is p e U(cu) such that f (p) e X. (In the context of our spaces, this 

definition agrees with other more usual definitions.) 

3.1. Theorem. The space XT is countably compact if and only if XT is 

2 W 

countably compact for all J C I such that 0 < |j| < 2 . 

Remarks Concerning the Proof. The "only if" implication follows from the 

fact that the continuous image of a countably compact space is countably compact. 
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We turn to the "if" implication. 

Following Bernstein [2], we say (for p e U(u>)) that a space X is p-compact 

if ?(p) e X for every f e Xw. It is not difficult to show (cf. [2] or [13]) 

that the product of p-compact spaces is p-compact. Indeed we have the following 

statement: 

(*) If f e (X,) and if there is x = (x. : i e 1/ e XT such that 

(TT.O f}"~ (p) = x. for all i e I, then f(p) = x. 

It follows that if the desired conclusion fails then there are f e (XT)
W, 

and (for every p e Ufa))) an element i(p) of I, such that (TT.. s°f)~"(p) $ X. ( ^, 

Then with J = (i(p) : p e U(a>)} we have IT of e (x ) and 

(IT of)"" [U(w)] f\ X, = 0, so that X, is not countably compact. Since 

2W 

|j| <_ |u(o)) | = 2 , the proof is complete. 

I 

We remark that (*) may be established directly, as in [5], or by appeal 

to the work of Glicksberg [15]. It is noted in [15] that a product space X 

is pseudocompact if and only if XT is pseudocompact for all J c I such that 

0 < |j| <_ GO; thus our space X is pseudocompact. It then follows from 

Theorem 1 of [15] that 3(Xj) = TT-eI &
x-; statement (*) is then obvious. 

The technique used in the proof just given has been used by Ginsburg and 

Saks [13] and Saks [20] in connection with product-space theorems concerning 

a multitude of topological properties. 

Theorem 3.1 has been proved in [4] and [20], and in [13] in the case that 

the spaces X. are pairwise homeomorphic. 

3.2. A Question. The following question, raised in [4], apparently remains 

unsolved. We emphasize that, as with Question 2.3 above, a solution is desired 

in ZFC (without the assumption of special set-theoretic axioms). 
Co 

2 
Is the cardinal number 2 optimal in Theorem 3.1? Is there a family 

2*° {X. : i e 1} of spaces,with |l| = 2 , such that X.. is not countably compact 

but Xj is countably compact for all J c I such that 0 4 J + I? Is there a 

2 W 

space X such that X is not countably compact but Xa is countably compact 
2OJ 

for all cardinals a < 2 ? 
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Reference is made in [5] to published and forthcoming works of van Douwen, 

of Juhasz, Nagy and Weiss, of Kunen, of Rajagopalan, of Rajagopalan and Woods, 

and of Vaughan, which answer portions of these questions under a variety of 

set-theoretic assumptions known to be consistent with ZFC. 

§4. On Glazer's Proof of Hindman's Theorem. 

If S is a set we write 

[S]w = {AC S : |A| - to} and 

[S]<a) = {AC S : |A| < a)}. 

We denote the set of posit ive integers by N> ai-d for F = {k : n < m} e [N] 

we set EF = Z{k : n < m}. n 
It was conjectured by Graham and Rothschild [16] that if |j - A. y A., then 

there are k e {0,1} and B e [A-^ such that ZF e Ak for all F e [B]<a). 

The following statement, due to Hindman [17], establishes (a statement formally 

stronger than) the Graham-Rothschild conjecture. Hindman1s proof [17] makes no 

use of ultrafilters, and will not concern us here. The proof we shall discuss is 

due to Glazer. 

4.1. Theorem. If n < to and N = U w \> then there are k < n and 

B e [ A ^ such that ZF e Ak for all F e [B]<a). 

Remarks Concerning the Proof. Define 

A • {AC N - there is B e [A]w such that EF e A for all F e [B]<w}. 

It is enough to show that there is p e 3(N) such that pC-4, To this end, 

for A c N and n e N define 

A - n = { k e N : k + n e A - * 

and define an operation + on 3(N)XG(N) by 

p + q = { A C N - { n e N « A - n e p } e q } . 

It is easy to show that + is an associative function into 3(N) and that the 

function q •*• p + q is, for each p e 3(N)> continuous as a function of q. 

It follows from Zorn's Lemma that there is p e 3(N) such that p + p = p; 

since + extends the usual addition function of N> and since there is no 

n e N such that n + n = n, we have p' e 3(N)^N-
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We outline the proof that p c A. For A e p define 

A* = {k e N : A - k e p}, 

and now fix A = AQ e p. Choose k-. e A* O A0 and recursively define 

A,. = (A - k ) fl A and choose k . e A* H A . so that k . > k . 
n+1 n n n n+l n+1 n+l n+l n 

Finally, define B = {k : n < u>}. It is easily shown that ZF e A = A for 

all F e [B]<a). 

Additional details of this proof are available in [14] and [5]. 

It is appropriate to note that it was F. Galvin who first raised the 

question whether there is p e 3(N)^N such that { n e N : A - n e p } e p 

whenever A e p, and who pointed out that an affirmative response would serve 

to establish the Graham-Rothschild conjecture; it was Glazer who defined the 

function + and showed the existence of p e 3(N)^N s u c n that P = P + P« 

It has been pointed out to me by I. Prodanov and others that a proof which 
2 

has been available for some years of Ramsey!s theorem w -*• (w) is reminiscent 
n 2 

of the proof just given. Indeed let p e U(u>) and suppose that [w] = [L A, . 

For i < a) define A, (i) = {m < u) : {m,i} e A, } and set B, = {i : A,(i) e p}. 

Since IL Bv = w there *s -hr e P« Choose kQ e B=- and recursively choose 

k - e B=-n/^.^, Ar-(k.) so that k -> k . Then B = {k : m < u>} satisfies 
m+1 k i<m k i m+1 m m 

B e [u.]w and [B] c As-. This is essentially the proof of the relation 

2 
-° "*" M given, for example, by Chang and Keisler [3] (Theorem 3.3.7) and by 

Jech [18] (Problem 7.5.1). 

4.2. Hindman's Theorem in ZF. A mathematician reading Glazer1s proof of 

Hindman's theorem may be dissatisfied because the proof appeals to the Axiom of 

Choice while the result itself "looks as if" it should be provable without appeal 

to that axiom. The same objection may be lodged against the original proof of 

Hindman [17] and the proof given subsequently by Baumgartner [1]. 

Responding to an inquiry whether Hindman!s Theorem is a theorem in ZF, 

Professor Baumgartner has communicated the following information (letter of 

September, 1976); this is recorded here with his kind permission. 

Hindmanfs Theorem is a n9 assertion, i.e., it can be put in the form 

(VXeP(w)) (HYeP(a)))<|)(X,Y), where $ contains only first-order quantifiers 

ranging over the natural numbers. The following theorem, due to Shoenfield, 

asserts that n sentences are "absolute". 

Theorem. Let M and N be transitive models of ZF (tf may be the 
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universe of set theory) such that M C N and every countable ordinal of N 

lies in Af. Then if <(> is any IU-sentence, <(> is true in M if and only if 

<|> is true in N. 

The standard reference is [21] (pp. 132-139), though the result given there 

is weaker than the theorem above. 

To verify Hindman's Theorem it is enough to show that if <|> is II - and 

ZFC h-<|>, then ZFh-<f>. Suppose that + is (VX) (HY)i|;(X,Y). Fix X and 

consider L[X], the class of all sets constructible from X. It is well-known 

that L[X]|= <(>. Hence HY e L[X] such that L[X] |= 4>(X,Y). But since *(X,Y) 

involves only first-order quantification over the integers, and since the 

integers are the same in L[X] as in the "real world", it follows that *(X,Y) 

is really true. Thus we have shown that (VX) (HY)ij>(X,Y), i.e.j that $ is true. 

Since this argument will work in any model of ZF, it follows that ZFI— <|>. 
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