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FOURTH WINTER SCHOOL (1976)

ON SOME COMBIFATORIAL PROBLEMS IN UNTFORM SPACES

by
"J. PEIANT?

O. We have solved some problem in the theory of uni-
form spaces using a combinatorial representatiom of them.
The following easy observation is very important for our pur-
pose:
Observatiom: Let (X,fu,)' be a uniform space. Let ﬂ”q, be
i}, -covers of X such that fP-,ﬁ Q » Then )
;’})Q{P‘ PlxePIoiPrecP|Pael s

:x\EJQ*P e P | st x,§)cP} for each Qeq .

Using 0b§eﬁation we have constructed uniform spaces as comp-
- licated as possible, mamely we exhibitéd a class I of simp-
ly described umiform spaces (see [P]) that projectively gene-
rate the category UNIF. -So these spaces resembls to .3;,, ‘s
and ;'eally, each member of 0 is wniformly homeomorphic to
the positive part of the unit sphere of some 2, .( £, is
endowed with the metric wniformity). . : '

. Results: R '
1. Point-character of a uniform space
Definitiom: (X,‘)Li is a uniform space. A point-character
pe(X,U ) is the least cardinal m such that there :ia a base B
of 9 such that card {P & P | x€P3 'is less than m for each
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xeX and each Pe B .
Theorem: pe £y (m)>m for each infinjte cardinal m. Theo-
rem implies that lw(apo) has no point-finite base. Under
Generalized Continuum Hypotheeis [GCH] , Theorem is the
best possible result as pc £,,(m}<2" in general,

2. Cardinal reflections
(X,iu.) is a uniform space, o is an infinite cardiml, We
define p‘u = {PecWUlcara P= <}

»Lf_LGCHJ holds or if (X,4L) has a point-finite base, then
B is a uniformity for each o . But applying Baumgart-
ner’s theorems on almoat-disjoini sets {see [B]) we receive
that it is consistent with ZFC to suppese that p % is not
a uniformity for ary e Z @, (p % is always a uniformi-
ty if = @ ,0)

3. Modification preserving completeness
We are looking for a modification (i.e. a reﬂectiqn preser-
ving underlying sets) which preserves completeneaé. We Xnow
ore : identity: UNIF—p UNIF but no other (and maybe, there
is no other). The following theorem indicates the ccmplexity
of the problem {(the problenm is due to 2. Frolik).
Theorem: Let r: UNIF—% UNIF be e mod:.flcat:.on. If there is
a cardinal m such that pe(rK)<m fctr' KeX¥X (X is menuou
ned sudb O) then r does not preserve completeness.
Example: The distal modificatian does not’ preserve comp‘iee
teness,
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