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FOURTH WINTER SCHOOL (1976}

CONCRETE REFINEMENTS OF UNIFORM SPACES .

by
g, vxmovsxf

Let U be t,he category of Hausdorff uniform spaces &nd
uniformly continuous mappings. The concrete category 4
will be. called concrete refinement of U if it has the same
objects as U and contains U as a subcategory. The space X
will be called K-fire if all K -mappings with domain X
are uniformly continuous, ﬂC-.-coarse if all R -mappings with
renge X are uniformly continuous.

Theorem 1: lLet 3 be 4 concrete refinement of U, The class
of all % -fine spaces forms a coreflective subcategory of U,
the class of all K-coarse spaces forms an epireflective ami
hereditary subcategory of U, Conversely every coreflective
subcategory of U is of the form ¥ -fine and any hereditary
epireflective subcategory of.U is of the form & -coarse for
som concrete réfinements ¥, &L ..

The concrete refinenﬁnt ¥ will be called fine-maximal
(resp. coarse-maximal) if it is the largeét concrete refine ~
ment w.r.t. inclusion generating the same class ¥ -fine
(resp. X -coarse),

Theorem 2: The following properties cf a concret.:e refine~
ment are equivalent:

(1) ¥ 1is fine-maximal,
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(ii) The embedding fungtor U <» % has an idempotent
left adjoimt . ' ‘ . '

(iii;) KX is ¥ -isomorphic to X for all spaces X,
where ’ch denotes the coreflector inmto ¥ -fine spaces.
One can also prove the dual theorem for coarse-maximal refi-
nements,
Theorem 3: There are no simultaneously fine-maxim 1l and coar-
s‘e-maxin'al concrete refinements of U (except of the trivial
refinement U). .
Corollary: The only coreflector preseﬁing proximity is the
identical functor.
One can find the proafs of these statements in [V], In [FJ ore
can finl interesting examples of refinements,
Example and f)roblem: The mappipg between two uniform spaces
is called Cauchy if the image of any Cauchy filter is agaJ':n a
Cauchy filter. Obviously Cauchy forms a concrete refinement
of U. Furthermare Caxchy is a fine-maximal refinement and Cau-
chy-fire is a class of all uniform spaces which are dense in
topologically fine spaces. It fallows from t-he first state-
ment ani Theorem 2 that the functor (L'auchyf preserves the
structure of Cauchy filters., There -is an interésting question
whether there exists som nonidenticél modi fication r (refle-
ction preserving underlying sets) in U preserving Cauchy
structure (i.e. rX is Cauchy-isomorphic to X for any space X).
This question has several equivalent reformulatiors :

(i) Is there some nonidentical modification in U commu-

ting with comple tion 7
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(ii) Is there some nonidenticel modification such that
the value of a comple te space is again comp:leté ?
(iii) Is there a coarse-maximl refinement %X (nontri-

vial) such that < -fine is closed under dense subspaces 7

The problem seems to be difficult in @neral, the best par-

tial result is that such modification must be identical on

the class of all distal spaces (spaces having the basis of

finite dimensional covers)
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