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FOURTH WINTER SCHOOL (1976)

RADON NIKODYM PROPERTY AND SET-VALUED INTEGRATION

by
Alain COSTE

Let E be a Banach space, and E’ be its cona‘uégte. We
denote by % (E), the set of closed bounded convex subsets _
of E. on ¥ (E) we consider the following addition (deno-
ted by + ) ' '

¢ % ¢’ = closure (C + C")
We endow %€ (E) with its Hauedorff topology.’

For C e €(E), and ye E’ we denote by J¥(y/C) the scalar
d*(y/C) = sup £<x,y> / xsC}.

We dencte by - ¥ (E), resp. QW(E) the set of compéct, resp.
weakly compact comvex subsets of E. . ’

We_ consider a fixed comple te positive ﬁni;e measure
space (A, 3",((0). -

Definition 1. Assume that E is separable. A map T
from £ to €€ (E) is said to be @ -measureble if ore of
the following equivalent conditions holds:

(i) There exists a sequence ( 6,)p»o Of measurable
maps from . to E such that T (&) = closure {G'n(&»/nz o}

a.e. A

(11) The graph of T = {(@,x) €A xE/x 6T ()7}

belongs to the product 6 -algebra 3’ @ (Borelians of E).
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(The equivélence of (i) and (ii) is due to C. CASTAING.)
We call selection of T & measurablr mp 6 :.Q —> E
such that: 6lw)e T(w) o a.e.
We denote by L (T) the set of selections of T .
Definition 2. let E be a separable Banach space, and T
be & @ -measursble map from L to <€ (E). We say that
T' is @~-integrable if the following two properties are sa-
tisfied:
(1) For every yeE’ themap @ —»> d™*(y/T(2)) from
L to R is @ -integrable
(ii) Every selection of T ' is Pettis- @ -integrable.

We demte IAT‘d(» the set = closure {L 6'&@:./6‘:«6 (ri.
We have IA' I'"d(.& € € (E) for every A e ‘T .

Theorem 1. Let T : Q —> < (E) be (-integrabdle,
then the map M from & to ¥ (E) defimed by u(A) = [, T ae ,
Ae 8’ , satisfies the following properties. )

(i) Whenever ANB = @, then M(Au B) = M(A) +.M(B)

(ii) wn rAd=s U then M(A) = é M(A)
* eneve dia.)'oint&n' = An’s

i.e. this series is unconditiorial]y convergent for the Haus-
dorff topology.

(iii) The variation /M/ of M is & -finite,

(By definition /M/(A) = sup { Z N x;l /(A;) finite par-
tition pf A’ and x;€ M(Ai)}.) *

(iv) For every y€E’ we have:
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G/ fyTde ) = [, ST W) @ e

This last point is due to IOFFE-TIHOMIROV.

Definition 3. Let (N1, J) ve a measurable space. A map
from @ to  %€(E) is said to be a set-valued measure if
it satisfies properties (i) and (ii) in ’I‘h.eorsn 1.
de call selector of M a vector measure m: 9’ —> E such that:

m(A)eM(A), VAeT .
ye¢ denote by (M) the set of selectors of M.

We: say that M is rich if it satisfies the following pro-
perty: i '

M(A) = Closure {m(A)/m e (M)}, 'V Ae&g’ .

Theorem 2, Let M be a se't-valued measure from 0" to
€ (E).

1) If M is A’(E)-valued, then M is rich .,
2) If E is separable, then M ié,rich .

3) If E has R.N.P., then M is rich .

(The point 1) is due to PALLU DE LA BARRIERE)

Problem 1: Is every set-valued measure rich ?

Definition 4. We say that a set-valued measure M from
0" to ¥(E) has a density with respect to &', if there
exists a -integrable map T : ) —>» € (E) such that
M(A) = fAl‘ dw , VaelT.

Theorem 3. Let E be a separable Banach smce having
R.N.P. Then every set-valued measure M with G'ifinite va-

riation and aBolutely continuows with réspect to @ (i.e,
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CL(A) = 0= M(A) = €0% )-has a density with respect to
P
Question 1. . Assume that in Theorem 3, M is W(E)-va-
lued. Is then thke demsity of M alsc . W' (E)-valued @ a.e. ?

Question 2. The same with ‘X (E)-valued .

‘The answer to question 2 is no (there exists a counter
example -in l,_ ) o

The answer to quest:.on 1 is yes if E’ is semrable, and
no if Ea f,

More generally we have the follavring theorem,

Theorem 4. Let E be a separable space such that E’ is
separable., Let M: T— ﬂ)’(E) be a set-valued measure absolu-
tely continuous with respect to & with 6 -finite varia-
tion, and such that every selector m of M has a density wi-th
respect to éb (which is the case when E has ‘R.N.P.). ‘Then M
has a W (E)-valued density with respect to “« .

Let us call (P) the follwmg property of a separable
Banach space E: ) ’

Every set valued measure M with values in W'(E) satis-
fying the assumptions of Theorem 4 has a ’llf (E)-valued den-
sity. i v

We know that:

E’ separable -==¢ E satisfies (P)=d E p £

Problem 2: What is exactly property (P) ?



