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FOURTH WINTER SCHOOL (1976)' 

RADON NIKODYM PROPERTY AND SET-VALUED INTEGRATION 

by 

Alain COST.6 

Let E be a Banach space, and E' be its conjugate. We 

denote by ^S(E), the set of closed bounded convex subsets 

of E. On ^?(E) we consider the following addition (deno­

ted by + > 

C + C' = closure (C + C') 

We endow Ĵ (E) with its Hausdorff topology.' 

For C € S?(E), and y€E' we denote by cT#(y/C) the scalar 

d^y/C) =- sup «t<x,y> / x * C j . 

We denote by - X ( E ) , resp . <W(E) the set of compact, r esp . 

weakfy compact convex subsets of E. 

We consider a fixed compile te posit ive f in i t e measure 

space (.A, ^.(CtK 

Definition 1. Assume that E is separable* A map P 

from Si to <€ (E) i s said to be fU -measurable i f one of 

the following equivalent conditions holds: 

( i ) There exis ts a sequence ( 6 .^)^^ of measurable 

maps from XL to E such that T (&) * closure -i6n(fiJ)/n*Z 0 J 

(* a . e . 

( i i ) The graph of P =* -{(«-> ,x) e i l ^ E / x «;P ( o ) ? 

belongs to the product € -algebra (T ® CBorelians of E). 
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(The equivalence of ( i ) and *( i i ) i s due to C CASTAING.) 

We c a l l s e l e c t i o n of V a measurable map &: SL —*- E 

such that : € te>) 6 V (a ) ) p, a . e . 

We denote by £>\T) the s e t of s e l e c t i o n s of P « 

Def in i t ion 2 . Let E be a separable Banach space , and V 

be a AC-measurable map from SL to <£ (E). We say 'that 

T i s £&-integrable i f the fol lowing two propert ies are s a ­

t i s f i e d : 

( i ) For every y £ E * the map <u — > cf* (y/T1 ( & ) ) from 

- d to R i s (0, - integrable 

( i i ) Every s e l e c t i o n of T i s P e t t i s - #fe - i n t e g r a b l e . 

We denote f T d/u, the s e t « closure -{ jT flTd^c/o"' tf «£ (T )$ • 

We have T P d ^ t € <£ (E) for every A e kT . 

Theorem 1* Let T : XI — > *K (E) be (tx—integrable , 

then the map M from (T to <£(E) defined by M(A) -=- J P d̂ fc , 

A fc (P* , s a t i s f i e s the fol lowing proper t i e s . 

( i ) Whenever An B =- 0 f then M(Au B) =- M(A) +M(B) 

( i i ) Whenever A n \J A , then M(A)'= ZI M(AM), 
d i s j o i n t 1 1 *rXO / ^ 

i . e . t h i s s e r i e s i s unconditionally convergent for the Haus-

dorff topology• 

( i i i ) The var ia t ion /W of M is C? - f i n i t e . 

(By d e f i n i t i o n /M/(A) « sup { Z I x i l / ( A . ) f i n i t e par-

t i t i o n of A and x±€,Uik±)%) 

( i v ) Far every y C E ' we have: 
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This last point is due to 10.FPE-TIHOMIROV* 

Definition 3* Let (XI, (l) be a measurable space* A map 

t from 3* to <£(E) is said to be a set-valued measure if 

it satisfies properties (i) and (ii) in Theorem !• 

•te call selector of M a vector measure ra: IT' — -> £ such that: 

m(A)eMU), V A e <T , 

#e denote by if (M) the set of selectors of M. 

We say that M is rich if it satisfies the following pro­

perty : 

M(A) = Closure-Cm(A)/m € V (M) { f V A €*$* * 

Theorem 2. Let M be a set-valued measure from (T to 

«(E). 

1) If Id is ^(E)-valued, then M is rich . 

2) If E is separable , then fil is,rich . 

3) If E has R.N.P., then M is rich . 

(The point 1} is due to PALLU DE LA BARRIERE) 

Problem 1: Is every set-valued measure rich ? 

Definition 4. ¥e say that a set-valued measure M from 

{T to ^?(E) has a density with respect to £u * , if there 

exists a û -integrable map V : £L — > <t (E) such that 

MCA) - j J j T d ^ , V A t 3 ^ 

Theorem 3 . Let E be a separable Banach space having 

R.N.P. Then every set -valued measure M with 6 * - f i n i t e va­

r i a t i o n and absolutely continuous with respect to {Ci- ( i . e . 
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/a(A) rr O**-* M(A) » «[ 0 } ) has a density with respect to 

< * * 

Question 1. Assume that in Theorem 3, M is flT(E)-va-

lued. Is then the density of U also J
2(r(E)-valued ft a.e. ? 

Question 2. The same with % (E)-valued • 

The answer to question 2 is no (there exists a counter 

example in / * ) • 

Bie answer to question 1 is yes if E' is separable, and 

no i f B a ^ • 

More generally we have the following theorem. 

Theorem 4. .Let E be a separable space such that E' is 

separable. Let M: $*—> W(E) be a set-valued measure absolu­

tely continuous with respect to û, , with 6-finite varia­

tion, and such that every selector m of M has a density with 

respect to AC (which is the case when E has R.N.P.). Then M 

has a W (E)-valued density with respect to ft, • 

Let us call (P) the following property of a separable 

Banach space E: 

Every set valued measure M with values in tCT(E) satis­

fying the assumptions of Theorem 4 has a ^(E)-valued den­

sity. 

We know that: 

E' separable «=-=> E satisfies (P)«—> E >̂ Z^ 

Problem 2: What is exactly property (P) ? 


