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US 

FOURTH WINTER SCHOOL (1976) 

ASPUTOD SPACES 

by 

I> NAMIOKA 

I reported an instance of two separate lines of investiga­

tions that were eventually joined profitably. Much of the 

material was taken from the joint work with R.R. Phelps. 

I. Def. A function f of a topological space X into T 

is called barely continuous (ty E. Michael) if for each clo­

sed subset A of X, the restriction fl. is continuous at at 

least one point of A. 

Theorem. Let (E,J) be a metrizable locally convex spa­

ce, and let A be a weakly compact subset of E. Then the iden­

tity map of (A, weak)—MA,J) is barely continuous. 

The analogue of this theorem is false if "weak" is re­

placed by "weak* " in a general dual Banach space. So we ma­

ke the following definition! 

Def. The dual E* of a Banach space E is said to be 

(DA) if for each weak*-compact subaet A of E the identity 

map (A, weak* )—-> (A, norm) is barely continuous. 

Theorem 1. Suppose that B* is (DA.). Then: 

(1) B* has the Radon-Nikod^m Property (ENP). 

(2) E* has the Krein-Milman Property (KUP). 

(3) Each <ur*-compact convex subset C of E* is the 

weak* convex closed hull of those points of C that are 
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strongly exposed by points of E. (An element f of C is said 

to be strongly exposed by xQc E if f(xQ) * sup-$g(x0): g€C$ 

and if, for each net i^i in C, f ^ ^ ) — > f ( x Q ) »=-> 

mm&lt^-tt-+ 0 .) 

(Remark. One now knows that for a dual Banach space HNP and 

KMP are equivalent.) 

Examples of E* that are (LA): 

i) Separable E * 

ii) More generality, weakly compactly generated (WC6)E* 

Problem (Zizler) Is it enough to assume that E* is 

contained in some WCQ Banach space? 

iii) E* has property ( * . * ): A net f, in E* conver-

ges to f in the norm if t^ *- f and 8 t^ )l — > k f if 

(e.g. * V ) * c0(T)* ). 

II. A convex function f on BP can be differentiated 

a.e. In 1968 Acta Math, paper, Asplund investigated the cor­

responding situation for convex functions -on Banach spaces. 

Def • A Banach space E is called an Asplund space (cal­

led a strongly differentiability space by Asplund) if each 

continuous convex function on a convex open subset of E is 

Fr^chet differentiable at each point of a dense subset of 

the domain. 

Asplund proved:f 

Theorem 2. . If E admits an equivalent norm whose dual 

norm is locally uniformly convex, then E is an Asplund space. 

(Note: Such a norm has the dual norm that satisfies (;* *).) 
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Cor. If E * is separable, E is Asplund. Also, if £ 

is reflexive E is Asplund. 

III. (Synthesis) 

Theorem 3. A Banach space E is an Asplund space ifSE* 

is (DA). (The following result was independently obtained 

by Collier, John-Zizler, and Namioka-Phelps.) 

Cor. If E* is WOG, then E is an Asplund spac.e (see 

Example Kii)). 

This new characterization enables us to prove good per­

manence properties of Asplund space. Asplund proves that if 
E E is Asplund then /F is Asplund for an arbitrary closed 

subspace Fc E. 

Theorem © If E is an Asplund space, then each closed 

subspace is an Asplund space* 

(5) Let E be a Banach space and let P be a clo-
E * 

sed subspace such that F and /F are Asplund spaces. Then 

E is an Asplund space. 

© Let -CET 5 3fGT$ be an arbitrary family of 

Asplund spaces. Then the c0 and X~ C1<p «-*: eo) products of 

*tS_w$ is an Asplund space. 

Additional Comments. 

i) If E admits an equivalent norm" that is Fr^chet dif-

ferentiable (everywhere!), then E is an Asplund space. (Pro­

ved by two French mathematiciana •) 

Problem: Is the converse true T 

ii) For E* , are (DA) and RNP equivalent? They are 3ci 

to be equivalent in the following cases: E is a subspace oi* 



All 

a WCG Banach space; E - C(X) for compact Hausdorff X* 


