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POURTH WINTER SCHOOL (1976) 

ON ONE GENERALIZATION OF THE WEAKIX COMPACTLT GENERATED 

B-SPACES 

by 

L. VA££K 

Because reflexive B-spaces are exactly those* which are 

S-compact in their weak topology, the following generaliza­

tions of ^-compactness are of interest: 

1) analytic topological spaces ( a topological space T is 

called analytic iff there exists a mapping f from cu $ **J 

being the set of all finite ordinal numbers and also so the 

first infinite ordinal number into the set of all compacts 

in T such that for any open G in T the set -Cnre to • f (1T) € 

€ G $ is open in usual product topology of a;, . 

2) Topological spaces which arel^j- ( a topol* space T 

is called K^r in a topological space T iff T«T' t 

the topologies of* T and T coincide on T and there are 
* -* «© 

compacts A ^ in T so that T « ^C\ \j A ^ ) • 

It is easy to show that for any topol. space T it holds: 

(T is 6"-compact)*•> (T is K&* in some top. space T') 

«-^(T is analytic) —»> (T is LindelSff in its weak topology). 

Definition 1: A B-space X is called weakly analytic 

(wA) iff X is analytic in its weak topology. 

Definition 2. A B-space X is called weaker it (WK) iff 

X is X& in X** (second dual in its w -topology). 

Remark 1. It can be shown that if a B-space X is £44* 



in some uniform space T', then X is WK.so the definition of 

WK property is not too restrictive. 

Proposition 1: Let X be a WCG B-space- Then X is 

WK (with convex AAAt 's - we will call this CWK property vor 

space)) . 

This was proved independently by D. Pre iss and Tala-

grand and by means of this observation they solved this pro­

blem of J. Lindenstrauss: 

Is every B-space WCG iff it is LindelCff in its weak 

topology? 

So the implication " «=> " holds and the opposite can­

not be true because WCG property is not hereditary (on clo­

sed linear subspaces) and LindelSff property is. 

Many of basic properties of WCG B-spaces can be proved 

for CWK 3-spaces; 

Theorem 1. Let X be a CWK B-space. Then: 

(a) X has a projectional resolution of identity i.e. there 

are linear projections P_ •> w -. c* - je (^C-is the 

first ordinal number of cardinality dens X =- inf i card H ; 

H is dense in X \ ) such that: 

(i) II Pji = 1 for any oo * O -£ cC • U , 

pa6 = identity on X , 

(ii) ^ Pp = Pp P^ = ̂  for any <* -fr «6 .£ /3 £ 4* f 

(iii) dens PoC,(X)^card oc , 

(iv) the function P^ (x), x s l fixed, is continuous 

on <ca,'K>> in the usual order topology. 

(b) dens X = W* - dens X (= density in >.* -topology) 



(c) there exist a set V . and a linear continuous one-to-

one mapping from X into c0 C V ) * 

(d) X admits an equivalent locally uniformly rotund (LUR) 

norm. 

(e) X has an equivalent Frechet differentiable norm iff X 

has an equivalent norm which dual norm on X* is LUR iff X 

has a shrinking Markusevic" basis. 

(f) If X* is also CWK, then X is WCG. 

Proofs of this theorem are mainly generalizations of tho­

se for WCG B-spaces. They are in some cases more simple. Be­

cause CWK property is hereditary, every subspace of WCG B-spa-

ce is CWK, but while we do not know any definite way how for 

given subspace of WCG B-space to find this WCG space,for CWK 

spaces this ambiguity is overcome by Remark 1. 

Problems: 

Problem 1. All converses to the following implications: 

A B-space X is: 

(subspace of WCG B-space)«.> (CWK).—* (WK)»*(WA) = > 

s ^ (weakly LindelOff) ?! 

Problem 2. Is Theorem 1 true also for X only 

WK (WA, weakly LindelOfT) ? 

Problem 3. Let X* be a CWK B-space. Is'then 

a) X* with Radon-NikocV̂ m property, 

b) X Asplund space (i.e. strong differentiability 

Space) ? 


