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FOURTH WINTER SCHOOL ( 1 9 7 6 ) ' 

OH MHTCENTERS IN NON-COMPACT SETS 

bar 

Heinrich~v. WEIẐ CKER 

I . The following theorem is due to 0 . Winkler (Thesis, 

Mttnchen '76). It i s an extension of a particular case of the 

Ghoquet-Bishop-de Ieeuw to the non-compact case. I t improves 

an earlier result of myself (Math. Zeitschrift 1975). 

Let T be a completely regular space. Let C^T) (resp. 

JJ(T)) be the space of a l l continuous (resp. Borel measur­

able) real-valued bounded functions on T. Let ,At(T) be the 

space of a l l bounded Radon measures on T. 

Theorem A: If X i s a convex ^^(T^C^tT^-closed 

bounded subset of Ji+(T), then for each ^ e X there i s a 

probability measure p on the 0-algebra.over ex X generated 

by the functions v •—> v(g>) ( g> e ^i(T)) such that 

<^9} * JezX V < 5 ) ) ^ ( V ) V*.«»C*> 

In particular ex X+# . 

Problem: Find a proof of ex XJF$ which does not use Cho-

quet theory. 

H . Theorem B: (Fremlin-Prycef Froc. London. Math. Soc. 

1974). Let B be a real locally convex linear spacfe. Let X be 

a bounded subset of E. d e n 
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X is measure convex <• ••> X is a Krein set 

(i.e. every Radon measure ( i*e» if he X is compact, 

on X has a barycenter then the closed convex hull 

which is in X) of L is compact and contain­

ed in X) 

Remark: A convex set X is a Krein set, if e.g.: a) X 

is complete in some (E,E#)-topology (Thm. of Krein-5mulian) -

b) X is locally compact in the relative topology, c) X is 

the intersection of Krein sets* 

The next theorem shows (by b) and c) in the above Re­

mark) that a convex O^ set in a compact Z need not be the 

intersection of convex open subsets of Z. It gives a negati­

ve answer to questions of Christensen and Tops.ee. 

Theorem C: There is a compact convex metrizable subset 

Z of a locally convex space E, a convex Q ^ set X in Z and a 

probability measure p such that 

1 supp p c X 

2 X does not contain the barycenter of p 

3 p(L) = 0 for a l l compact convex subsets L of X. 

Proof by example: E » --H-(£0,1}) with topofogy 

tf (J|i( L0,1] , C ( £ 0 , n ) ) . 

Z « iqu 6 E : <u-> 0 f ^tx(l) « i ^ f a « Lebesgue measure an 

£0 ,11 , 

X » ^ t ^ € Z : A * | W,-fi,) 4 Z j , p « $ ( * ) , where 

<J> : C0 , l3 s t v-*. cTt . 
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This example can be embedded into other spaces (e.g. H i l o e ^ 

space or non locally convex spaces) by 

Theorem D Let Z, be a compact metrizab.le subset of a 

locally convex space E-. and let Zg De a compact convex infi­

nite dimensional subset of a topological linear space E«. 

Then there is an affine homeomorphism from the closed convex 

hull of Z-, to a subset of 2 2 » 

(Thm G + Thm D are contained in a paper of mine submitted 

to Math. Scand.) 


