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FOURTH WINTER SCHOQL (1976)

ON BARYCENTERS IN NON-COMPACT SETS

by B
" Heinrich-v. WEIZSACKER

I. The following theorem is due to G. Winkler (Thesis,
Miinchen ‘76), It is an extension of a partiqu]ai' case of the
Choquet—Biahop-dé Ieeuw to thé non-compact case. It improves
an earlier result of myself (Math. Zeitschrift 19"{5).V

Let T be a completely regular space. Let Cp(T) (resp.
.9 (T)) be the space of all cgntinuous (resp. Borel measur—
able) real-valued bounded functions on T. Let M(T) be the
space of all bounded Radbﬁ me asures on T,

Theorem A: If X is a convex G(M(T),CbLT))-cloaed
bounded subsst of M, (T), then for each @ €X there is a
probab:.lit; measure p on the -avlgebra‘over ex X generated
by the furctioms Vv r—» V(p) (@e H(T)) such that -

v . T
@) = ferx VPR VoeRMD
In particular ex X0 . .
Problem: Find a proof of ex X490 which d;es not use Cho-

quet th.ec_:ry.

II.  Theorem B: (Fremlin-Pryce, Proc. London. Math. Soc.
1974). let E be a real locally convex.limnear space. Let X be
a bounded subset of E, Then
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X is measure convex <===> X is a Krein set

(i.e. every Radon measure { i,é. if LCcX is commect,

on X has a barycenter then the closed convex hull
which is in X) , of L is compact and contain-
ed in X)

Remark: A corwex set X is & Krein set, if e.g.: a) X
‘is comple te in some (E,E’)=-topology (Thm. of Krein-Smulian),
b) X is locally compact in the relative topology, ¢) X is

the intersection of Krein sets.

The next theorem shows (by b) and c) in the above Re-
mark) that a convex Gy set in a compact Z need not be the
interséction of convex open subsets of Z., It gives a negati-

ve answer to questions of Christensen and Topsge.

Theorem C: There is a compact convex metrizable subset
Z of a locally convex space E, a convex Gy set X in 2 and a
probability measure p such that

1l supp pcX
2 X does not contain the barycenter of p
3 p(L) = O for all compact convex subsets L of X.

Proof by example: E = M ([0,1] ) with topolegy
6 (M 0,11, ¢(L0,13 )). . )
Z={weE: w20, @(l) =1}, A = Lebesgue measure an
Lo,11 , ' _
X=m®£@. €2 :?u% A-w) §23, p= @(A), wvhere
@: [0,1]1 >3 ts—-,»d't. .
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This example can be embedded into other spaces (e.g. Hiloer

space or non locally convex spaces) by

Theorem D Tet Z, be a compact metrizable sutset of a
locally convex space El and let Z2 be a compact convex infi-
nit_e dimensional subset of a topological linear space 22
Then there is an affine homeomorphism from the closed convex
hull of Z1 to a subset of 22 .

(Thm C + Thm D are contained in a paper of mine submitted
to Math. Scand.)



