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PFIFTH 'INEH_ SCHOOL {1977}
SUBMEASURES AND MEASURES
J«P.R, Christensen

Iet (X, z4) be & set with a Boolsan slgeora of of -
subsets.A submeasure ¢ on t§ is a setfunction which
haa the properties

1) ¢(@)=0 ; ALeB =>F(a) cAB)

i1) ZAUBE A+ @(B) .

The submeasure ? is pathological if there does not
existe & non trivial finiteiy additive non negstive measure
dominated by ¢ .The exiatence of pathological submeasures
hes been shown in [7J and independently by Preiss &¥ili-
moveky and by Popov .

The main open Iﬁroblem in the subject is the control
measure problem ,whiéh is squivalent with the following
j)roblem . '

The submeagure ¢ is cﬂled 8 Maharam submeasure
if 1t is defined on a g-fleld and sequentially point
continuous (see[7s]) .The control measure problem is -equi- -
valent with the problem whether or not every Maharam sub=
measure admits a probability (countably additive) with
the same zero sets.It was shown thet if & control measure
exista then there exists a control measure dominated by ? .
in fact the problem is equivalent with whether or no.‘t- the
Meharam submeasure is pathologicel. C

Our main result so far is that a control measure axiaf _
if and only if the Maharam submeasure g/ defined on the
messursble space (I,@ ) fulfills the conditiont -
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We consider the unit interval I with usual Borel
structure and Lebesgue measure v .Let A¢XxI be a
measurable subset and suppose

Veex v(iteI] (x,t)e83 )=0 .
Then there exists a toe I such that

¢ ($xex) (x,8,) €03 )=0 .

If the above statement is true (for every measurable
set A ) then there is a control measure .The condition
is of course ﬁecessary (Fubini theorem).The proof that
the condition is sufficient also can be found in [2;].

It is not known whether a translétion invariant Ma-
haram submeasure defined on the Borel subsets of a compact
metrizable abelian group is pathological.

It is not known whether a control measure exists for
measures taking values in the space of equivalence classes
of measurable functions (with topology of convergence in
measure).
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