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On the non-eeparable descriptive theory 

Z.Frolik, P.Holick? 

The theory of analytic spaces or set3 is extended to a wider 

class of spaces containing alao 3ome non-Lindelof spaces, particular­

ly all complete metric spaces and their products with compact spaces. 

In the hyperanalytic spaces defined below the technique of upper se-

mi-continuous compact-valued mappings, and also the technique used 

in non-separable metric spacea can be used. Definition 2 therefore 

unables to study the descriptive theory in non-separable spaces like 

an extension of the separable theory which was studied separately 

till now. 

Definition 1. Say that a family {Xa) A is c-d.d. (C-discrete-

ly descomposable) in the uniform space X if there are seta X f 

a€ A , and near f such that X = U X , and the families 

lXanlacA a r e <*iscr<**-

Definition 2. Say that the uniform space H is hyperanalytic if the­

re are a complete metric space M f and an upper semi-continuous com­

pact-valued mapping f from M onto H f such that images of er-d. 

d. families in M are er-d.d. in H • 

The hyperanalytic spaces have a lot of very special properties, 

for example they are paracompact and absolutely Souslin in some sen-

ce. We describe the strongest properties in Theorems 1 and 2. 

Theorem 1. Let {x } be a point-finite completely hyperanalytic-

-additive family of set9 (subspacee) of the uniform space X (e.g. 

every subunion of ^Xa> is hyperanalytic in X). Then, ^X&> is 

6~-d.d. in X • 

Theorem 2. Let H be hyperanalytic, and S Souslin subsets of the 

uniform space X • If HO S « 0 , then there is a hyper-Baire set B 
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in 2 , such that HcBcX-S • 

.Remark. The ideas of the described theory follows Hansen's ideas 

for complete metric spaces, and the technique of upper semi-continu­

ous compact-valued mappings introduced by the first author* 

The properties of hyperanalytic spaces, proofs of Theorems 1 

and 2, and further theorems will be published elsewhere* 


