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FIFIH WINTER SCHOOL (1977 ) 

Aspiund Spaces and the RNP 

R. Huff 

A real Banach space X is an Aspiund space provided for every open convea 

set U c x, every continuous convex functional $ : U -* H is (Frechet-) 

differentiable on a dense G~ subset of U {3}. The main result discussed is 

the following. 

THEOREM (Aspiund, Namioka, Phelps, S t e g a l l ) . The following two statements 

are equivalent: 

(1 ) X ij3 an Aspiund space. 

(2) X* has the Radon-Nikodym property (RNP). 

A proof was given by breaking the result into two parts, the first of which 

is 

THEOREM ([31, [ 4 ] ) . Statement (2) above is equivalent to 

O) For every closed bounded set A c x*, the set 

ix £ X : x strongly exposes A} 

is a. dense G- subset of X. 

The second part, of course, is to show that (3) and (1) are equivalent; a 

proof can be found in [3], but here we gave a new proof via the following 

two easy lemmas. 
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DUALITY LEMMA. Let A be any closed bounded subset of X* x ]R , and let 

<p(x) - sup{f(x)+a : (f,a) € A} ' (x * X). Then cp is a convex functional on 

x satisfying â  Lipschlitz condition. Moreover, <p is differentiable at x 

(with gradient g) iff the map on X* * TR. sending (f,a) into f(x)+a strongly 

exposes A (at the point (g,cp(x)-g(x)).) 

REDUCTION LEMMA, Let U be any open convex subset of X and to : U -»» ]R 

any continuous convex functional. For each n = 1,2,..., let 

A » í(f,a) € X* x R: f(x)+a i ф(x), all x € U, ||f|| š n, |a| ê n}, 

and let cp (x) - sup{f(x)+a : (f,a) € A }. For every x in U there exist 

6 > 0 and N such that 

||y-x|| < 6 -» y € U and Ф(y) * Ф (y) for all n Ž N. 
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