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5TH JINTER SCHOOL 

TOTENSTCN OF FUNCTIONS ON BOOLEAN ALGEBRAS 

B I 

Z. LIP15CKI 

Let A be a Boolean algebra with the operations of Join, meet 

and difference denoted by v , A and x , respectively. The natu

ral ordering of A is denoted by 4 and its minimal element by 0. 

Given a subalgebra B of A and a function p on B with values 

in [0, oo ) or in an Abelian (topological) group G which has 

some properties related to the structures of both the domain 

and range spaces, we consider the problem of extending p. to A 

all the properties preserved. 

I. Suppose H-: B—>[0, oo)# We are concerned with four sets 

of conditions imposed on p.. 

(i) JUL is monotone (i.e. jj.(b) 4 t*-(c) whenever b,c€B and 

b ^ c ) , subadditive (i.e. p.(b^vba ). ̂  ̂ (b^') • M.(bt) whenever 

b„ , bx€B) and M-(0) = 0 (4). 

(ii) p. is additive (i.e. fx(b,v bv ) = p.-(b, ) • p.(bx ) when

ever b4, b1L€B and b^bx-= 0 )• 

(iii) p. is monotone, subadditive and exhaustive (i.e. 

M-Cb^)—• 0 whenever (bJcB and 0̂ 0̂ .-* 0 for all i* i' ). 

(iv) |UL is monotone, exhaustive and |x(bvc)a .̂(b \ c) 

(=p.Cb)) whenever b,ceB and H.(C)«0. 

(*) Such a function is usually called a submeasure. 
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As easily seen, (ii)=-»(i) and (ii)-=>(iii)«->(iv) and none of 

these implications can be reversed. 

The case where M. satisfies (i) is trivial. Putting v(a)= 

inf {fx(b): a^b€B} for acA f we get an extension satisfying 

(i). 

The answer is also positive in case /m fulfils (ii) or (iii). 

As for (ii), this is a classical result of Hahn-Banach type 

(seef e.g. f t4]f p. 270). When dealing with (iii)f the transfi-

nite argument must be essentially improved since the exhaustive 

ity condition involves countably many elements of A. The im

provement is suggested by the following observations: 

1. For any jx satisfying (i) the formula d̂ (b< f bx) « 

jut((b^brt)v (bx\b4)) for b̂  f b^€B defines a pseudometric on B. 

2, If C c B is a d^-dense subalgebra of B and /u-10 is exhaust-
i 

ivef then so is JJL. 

(The details can be reconstructed from t33« For a different 

proof see 123.) 

As for (iv)f the answer is positive under the additional as

sumption that B has the following compactness type property in

vestigated by Seever t53 : 

(I) Suppose b„f c„€ B and ty b4 ^ V c. for k-=l, 2f ... 

Then there exists X € B with \>b. 4 X .5. \/ci for k = lf 2, ... 

This property, which is somewhat weaker than 0- -complete

ness f corresponds to the fact that the representation space of 

B is an F-space ([5], Theorem A). The author does not know whe

ther the result fails for B without (I) (x). Before sketching 

(*•) For an arbitrpry B it can be shown that if M- fulfils 

(iv) with "exhaustive" weakened to "*u.(0) = 0,\ then it extends 

to A all its properties preserved. 
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the proof we give a lemma which is a slight generalization of 

a result due to Seever ([5], Lemma 3.3). 

Lemma. If B has the property (I)t N is an ideal in B and 

B/N satisfies the countable chain condition (CCC)f then B/N is 

complete. 

Suppose ^ satisfies (iv) and B has the property (I). Put 

N = {b€B: fx(b)=aO}. Then B/N satisfies CCCt so that, by the 

Lemma and Sikorski's theorem (C61, 33.1), the quotient horoo-

morphism B—B/N extends to a homomorphisro h: A—B/B. Putting 

v(a) r~p_(h(a))f where p* : B/N—*[0, oo ) is the quotient of **, 

we get the desired extension (cf. also 123, Theorem 1). 

II. Suppose G is an Abelian complete Hausdorff topological 

group and **.: B—G is additive and exhaustive. (These prop

erties are defined in just the saroe way as in I.) Then JJL ex

tends to A both properties preserved (131, Theorem 3t and £21, 

Corollary 3). This theorem can be proved using a similar idea 

to that described when dealing with JJI satisfying (iii). In 

fact, it is not hard to see that the group-valued case is 

more general than (iii). Let us also note that the assumption 

that G is complete cannot be dropped (C3], Example 4). 

Ill* Suppose G is an Abelian group and p.: B-*G is addi

tive. In this case the extension problem is open injgeneral 

(e.g. for G being the additive group of integers). The answer 

is positive under each of the following additional assump

tions: 

(a) (W. Herer) G is infective (see 111, $21, for defini

tion)-
(b) (C Ryll-wardzewski) card A ̂ x ^ 

(c) B/N is complete, where N-={b€B: p.(c) = 0 for all 

b £ c e B>. 



42 

As for (c), the assertion follows by an application of Si-

korski's theorem analogously to the case where yc satisfies 

(iv). 
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