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Infinite uniform dimension 

Jan Pelant 

The investigation of a generalization of the notion of large 

uniform dimension A d , which is introduced in [l3 f was 

presented. The large uniform dimension A d(XfUU) of a uni­

form space (Xt'U/) is said to be -̂  n provided every U^uni-

form cover of X has a uniform refinement of dimension at 

most n (i.e. at most n+1 members of this refinement have 

a non-empty intersection), (see £l3 )• The following theo­

rem is proved in j[ll * 

Theorem: Let (XfUi) be a uniform space. The following con­

ditions are equivalent: 

(1) <T € Xh has an n-dimensional uniform refinement 

(2) <T e XL> has a uniform refinement which is a union of 

n+1 disjoint subcollections. 

Thus the notions of dimension defined by the order of 

covers (see (1) of Theorem) and that defined by the decompo­

sition into disjoint collections (see (2) of Theorem) coinci­

de in the finite case. Both these notions are generalized: 

(1) of Theorem gives the notion of a point-finite cover (i.e. 

a uniform cover is said to be point-finite proveded that each 

infinite subfamily of that cover does have an empty inter­

section); (2) of Theorem gives the notion of a <r-disjoint 

cover (-unions of at most OJ disjoint subcollections). 

Clearly, both these notions give the possibility to extend 

a classification of uniform spaces (let us remark that this 

fact represents one of interesting features of uniform spa­

ces a# the Stone paracompactness theorem simplifies substan-
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tially the case of topological metrizable spaces but this 

theorem is not valid for uniform metrizable spaces - see 

[P21 f [SI ). 
The question arises whether Theorem can be extended 

to point-finite covers and ^-disjoint ones* It is proved 

in tBB3 9 1^3 that each <T -disjoint uniform cover 

does have a point-*finite uniform refinement, n e v e r t h e l e s s . , 

it is shown in CPJ that a point-finite uniform cover 

need not have a 6~-disjoint refinement* Moreover, for any 

infinite cardinal «*> $ there is a uniform metric space 

which has a base of uniform covers consisting of point^fi-

nite covers and does not have any base consisting of ^-dis­

joint covers ( oc -disjoint « anion of less than oo disjoint 

subcollections). The spaces e (If) ( « bounded real func­

tions on IS with countable supports, the metric is given 

by sup-norm) are these examples and the Brdos-Rado genera­

lization of the Ramsey theorem is used. It has been shown 

recently that the Erdos-Bado theorem gives the best esti­

mate of the "decomposition* dimension of e0(M) - it will 

be published probably in a joint paper with T.Rodl. 
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