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inite ifo. imension

Jan Pelant

The 1nvestigatioh of a generalization of the notion of largé

uniform dimension A d , which is introduced in [I) , was

presented, The large uniform dimension A d(X,W) of a uni-

form gpace (X,V) is sald to be £ n provided every U~uni-

form cover of X has a uniform refinement of dimension at

most n (i.e. at most n+l members of this refinement have

a non-empty intermection), (see. [I] ). The following theo-

‘rem is proved in [l ,

-Theorem: Let (X,\) be a uniform space. The following con-

ditions are equivalent:

(1) @ €W has an n-dimensional uniform refinement

(2) ¢ €L has a uniform refinement which is a union of
n+l disjoint subcollections.

Thus the notions of dimenéion defined by the order of
covers (see (i) of Theorem) and that defined by the decompo-
sition into disjoint collections (see (2) of Theorem) coinci-
de in the fihite case, Both these notions are generalized:
(1) of Theorem gives the notion of a poiht-finite cover (i.e.
2 aniform cover is sald to be point-finité proveded that each
Anfinite subfamily of that cover does have an empty inter-
section); (2) of Theorem gives the notion of & G -disjoint
cover (=unions of at most o;r disjoint subcollections).
clearly; both these notions give the bossibility to extend
a claésirication of uniform spaces (let us remark that this
fact represents one of interesting features of uniform spa-

ces as® the Stohe parécompactness theorem gimplifies substan-
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tially the case of topological metrizable spaces but this
theorem is not valid for uniform metrizeble gpaces - ses
L2, 1, [81).

The question arises whether Theorem oan be extended
to point-finite covers and G -disjoint ones., It im proved
in [RR]) , {PI] that each G <disjoint uniform cover
.does have a point-finite aniform refinement. Neverthelessa,
it is shown in [P3] that a point-finite nniform,covgr
need not have a G -disjoint refinemeni. Moreover, for any
infinite cardinal o, , there is a uniform metric space
which‘has a base of uniform covers conéisting of pointefi-
nite covers and does not have any base 6§§;§§ting 6f>uc-dia-
joint covers ( o¢ ~disjolnt = nnion of less than o disjoint
subcollections). The spaces o©,(M) ( = bounded real funo-
tions on M with countable,supports; the metric is given
by sup-norm) are these examples and the Erdos-Rado genera-
lization of the Ramsey theorem is used. It has been shown
recently that the Erdos-Rado theorem gives the best esti-
mate of the "decomposition™ dimension of eo(M) - it will
be published probably in a joint paper with V.Rodl.
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