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Fifth Winter School of Abstract Analysis, Stefanova CSSR 1977f 

Organized by the Mathematical Institute of Charles University, Prague. 

A Dini Principle for Convex Functions 

and the Theorem of James 

Gerd Rode 

We show that a set T in the unit ball of a dual Banach space E» 

gives us a good information about the whole space if 

Definition: T supports the norm on E: 

To each xGE there exists fCT such that f(x)-s|Jx||. 

Example: T» extreme points of the unit Ball. 

(But note that T/%Ball E«= |) is possible.) 

The following facts concerning such subsets have already been known: 

(1) (James) If the unit ball of a Banach space Ff considered as 

a subset of F1•, supports the norm on Ff, then F is reflexive. 

(2) (Simons) If (x^Xg,.,) is a bounded sequence in E such that 

f(x )-»o for each f€Tt then x ~*o weakly. 

This was proved by Rainwater in the case T= ex Ball E» f using 

Choquet theory. 

We prove (1), (2) and further results using a lemma about sublinear 

functionals on \t which generalizes the essential idea in James* 

proof of (1): 
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(3) Lemma. Let 3 he a subXinear functionaX on X.."**, c>o. 

Then there exists a sequence (q-,q2.-.) of points in x|, 

qn~ ^n»
qn#**^« such that 

(i) tfqn</= U q^-o i f 1-k<n. 

(ii) If p:X.|"-*JR is subXinear, p-5£ and p(q ) = p(q..), 

then p(q )£ 3 (q . j ) -c for each n. 

The proof of (3) is eXementary but difficuXt. 

The foXXowing theorem does not contain the fuXX power of (3), but 

it is sufficient for many applications ( (4)- (2),(5),(7) )• 

And it is very easy _to~work with it. 

(4) (Dini principle for convex functions) 

Let A be a O-convex subset of a TVS, (v-fv2,f,) a sequence 

of bounded convex functions such that 

(i) v ^ v ^ v ^ . . . 

(ii) If a€A, then there exists n€ N with v (a)=s v (a)f=: sup v. (a)]. 
n l XGM x ' 

Then inf v (A)-> inf v (A), n w 

(5) If T is strongXy separable, then E» is strongXy separabXe, and th< 

convex huXX of T is strongXy dense in BaXX E«. 

(5) contains (1) if F is separabXe. Another appXication: 

The Banach space of aXX trace cXass operators on a HiXbert space 

has the RNP. (You have to show that each separabXe space of 

compact operators on the HiXbert space has a separabXe duaX.) 

(6) If A is a convex subset of E and if for each sequence (x.jX-,.,) 

in A there exists x^GA with Ximinf f(x ) ~f (x^Ximsup f(x ), f£T 
n—°° n-*°° 

then A is weakXy compact. 

[6) is stronger than (1). 
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(7) If T is the countabXe union of weak-*-compact sets, then to 

each g€E» there exists a nonnegative reguXar BoreX measure on 

representing g. 

Let us finaXXy note that it is possibXe to deduce characterization 

of strong compactness with the same methods. For example: 

(8) A cXosed set K in a Banach space is strongXy compact iff 

each continuous seminorm attains its supremum on A. 


