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FIFTH WINTER SCHOOL (1977) 

SCATTERED COMPACTIFICATIONS 

R. TELGiRSKX 

Wroclaw 

A space is said to be scattered if it does not contain a dense 

in itself subset. E.g., the apace w W s {f :f<©<} is scattered in 

the open interval topology for any ordinal oC. 

Z.Semadeni [lo] posed the following question: Is there a scatte-, 

red compactification for any completely regular scattered space 7 

In particular: Is there a scattered compactification for Nu{p} C (31? 

where p 6/^N-N ? • 

In this contribution we present a survey of results concerning 

the above questions. 

(1) TV] Each metrizable separable scattered space can be embed­

ded in Wf°0 for some cc<u.t- and thus it admits a scattered compactifi* 
cation. 

Example 3*6, p. 17, in [lo] is incorrect. We have 

(2) [14] Each metrizable scattered space can be embedded in W (c( 

for some ordinal cC , and thus it admits a scattered compactification 

Similarly as in [14] one can prove the following. 

(3) Each suborderable paracompact scattered space can be embed­

ded in W(ot) for some ordinal o< f and thus it admits a scattered com­

pactification. 

(4) [7] Each suborderable scattered space of countable height 

is orderable and admits an orderable scattered compactification. 

(5) [14] If X is a paracompact scattered space, then ind X = 

= Ind X = dim X = 0. 

Hence we have 

(s) If X admits a scattered compactification, then ind X = 0. 

It is easy to prove that 

(7) If /3X contains a non-degenerate continuum C such that 

C^X ? 0, then X has no scattered compactification. 

(8) [8] (CH) Example of a completely regular scattered space X 

of cardinality X^ with ind X > 0; by (6) , X has no scattered com­

pactification. 

(9) [12] Example of a completely regular scattered space X of 

the cardinality 2** with ind X>0; by (6) , X has no scattered com­

pactification. 

(10) [?] (CH) If p is a p-point in pN-N, then No{p> admits a 

scattered compactification. 
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A point p€(3N-N is said to be a P-ooint of order 2 in /3N-N if 

there exists a countable set 22 of P-points in (3N-N such that D is 

a P-ooint in M-M. 

(ll) [2] (CH) If p is a P-point of order 2 in /3N-N, then N W { D > 

admits a scattered compactification. 

(!2) [3] (CH) If p is a P-point of order <X in £N-N, where 

o(<uL , then Nufcp} admits a scattered compactification. 

(13) [ll] If P belongs to the carrier of a regular Eorel non-ato­

mic measure ̂ U, on /3N with U(/3N) = 1, then Nu{p) has no scattered 

compactification. 

Let us note that the carrier of a regular Borel non-atomic mea­

sure U on AN with ll(&N) * 1 is a perfect subset of £N-N satisfying 

the countable chain condition. 

(14) [l5] If p belongs to a perfect subset of AN-N satisfying 

the countable chain condition, then Nu{p} has no scattered compacti­

fication. 

(3 5) [15] The set {p€/£N-N: NvV{p} has no scattered compacti­

fication} is X0-bounded; hence, in particular, it is countsbly com­

pact. 

A point p6 S is said to be a point of extremal disconnectedness 

of S if given two disjoint open sets U and V in S we have p^UnV, 
ed Let S denote the set of all points of extremal disconnectedness 

of S. Note that each subset of (3N-N satisfying the countable chain 

condition is extremally disconnected. 

(16) [l6] If (3X contains a dense in itself subset S such that 
ed 

X A S t 0, then X has no scattered compactification. 

If X is not pseudocompact, then £X contains a copy of £N and 

thus /3X cannot be scattered.-Moreover 

(l?) [5] If X is not pseudocompact, then there exists a point 

p€AX-X such that X u{p} has no scattered compactification. 

(18) [6~] Let X be a product of uncountably many two-point dis­

crete spaces. Let one point be given a base of neighborhoods as in 

the product topology; let all other points of X be isolated. Then X 

has no scattered compactification. 

A filter F is called k-regular if it contains a subset TQ of 

cardinality K such that the intersection of infinitely many members 

of FQ is empty. 

(19) [l3l If X is a space with the only non-isolated point p, 

card X>XJ( and the neighborhood base at p restricted to X-{p) is k-re-

gular, where H^<^^card X, then X has no scattered compactification. 

(20) [l] Example of a countable space with one non-isolated 

point all compactifications of which contain AN. 
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