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FIFTH WINTER SCHOOL (1977) 

Uniform spaces? with easy behavior with respect to coreflectiana. 

by JiM Vilimovsk^ 

A H uniform spaces are assumed, to be separated, R stands for a r 

line, H(A) for a hedgehog over a set A (that is a cone over a uni­

formly (discrete space A ) . All coreflections are assumed to be non-

trivial, thus all coreflections contain all uniformly discrete 

spaces. We shall denote by d. the coreflector onto uniformly discrete 

spaces, S the coreflector onto proximally <!2iscrete spaces, t+ onto 

topologically fine spacer, a onto Alex^ndrov spaces* The last corcf*-

lection assigns to each uniform space; X the coarsest uniformity 

finer than X and containing all finite cozero covers ( ®ee £FJ>* 

For* any space X and coreflector F we shall denote X-F the class of 

all spaces? Y such that any uniformly continuous f:Y—.*• X remains 

uniformly continuous into FX. It ia well known C®ee tVJ) that X-F 

is a coreflective class. 

The aim of this note ia to present a construction of spaces 

having the property that each coreflector behaves on them either 

identically, or as d. The obtained results have some interesting 

consequences we want to mention shortly about. The? details and proofs 

will appear elsewhere* 

Definition: Let Ik I be a sequence of natural numbers. We define 

a space lK{k Li on m set 

|<nfI> ;n*N, H U k ^ 

taking \°(Xmfi n*n\ , where. 

%m = \\(jt%ih ; k*n\ VJ {{<k,i> j **>\\ t k> n\ 

for a basis of uniformity* 

Setting kn * m * we denote the corresponding space D K and for* 

k * 2 we denote the apace; I^. 
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One can easily see that spacea D(-,kn̂ ) are complete, metriaable» 

zerodimenaional and topologically discrete. 

Propoaition.ls Let fc be a corefleative subcategory of uniform spacea, 

F the corresponding coreflector, \k \ a sequence of natural numbera. 

Suppoae D(\kay ^ £ „ then FD(-|k^) has a discrete proximity •(All 

pairs of diajoint sets are proximally far)» 

That means that taking any sequence \kV. then either FD(tk V) * 
* EL » n 

3=D(^k21\); or I D ( \ k n \ ) i s f i n e r than $ D ( j k n \ ) * aD( k^ J . Moreover 

i f \kEL«r i a bounded, then either FSUk^) « I>(|k
n() or FD^k^) i s 

uniformly d i s c r e t e We obtain, the following 

Corollary 1: The following properties of a uniform speae X are 

equivalent s 

(1) X i s D(\kn \ ) ~<£ .for a l l sequences \km} • 

(2 J X i s DClk^i — d for a l l bounded sequences S&n\ • 

(3> X b D j - i 

U) X i s D2 - d 

Having any csref lect ive class 6 in uniform apaees, the obtained 

result gives that either & i s contained in Do-d, or £ 

Ciontaines the core f leet ive hull coreftD^i of (D2^» One may find 

interesting that eoreftD^i i s very "iBTge", in fact i t containea a l l 

metriaable spacea, what follows from the following easy statement 

( cf. [ £ ) ) ; 

For M,S metrisable> f :M-~-> S i s uniformly continuous i f and onl^ 

i f fg i s uniformly continuous for a l l g'^2—*^ ^n^orm^y continu­

ous. 

One may go a step further from the Proposition 1 proving: 

Proposition 2; Take any coreflector F in uniform spaces, then either 

FD^ ^ DK or FDK =*SDN or FDN =• dD^ . 

Inatead of D^-we can take any space D ^ k ^ ) for en unbounded 

aequence \kEL^of natural numbers* Again similar conclusions as for D* 
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Corollary 2:Let 6 be any coreflective class in uniform apacea en<f 

let neither D^ nor 8 D N be in £ . Then & is a subclass of D™--d* 

More interesting results can be obtained if we restrict our­

selves, to coreflective classes closed under subapaces. We recall 

that for any coreflective class 6 the class Sub( 6* ) of all sub-

spaces of spaces in£ forma again a coreflective class ( see^V]). 

A similar theorem for the class Her( 6 ) of spaces being hereditarily 

in £ ia not valid in general, but fortunately in the case of Dp-d 

we obtain again a coreflection having even a nice description: 

Theorem 1: The following properties of a uniform space X are 

equivalent: 

(1) X is hereditarily J>2~& 

(21 X is hereditarily D ^ k ^ ) - d for all boundedjk^ . 

(5): X is hereditarily D({kn<, 1 -S for all \kn) • 

(4) Xis hereditarily D N - £ 

(5) Each countable uniformly discrete, union of boundedly finite 

uniformly discrete families is uniformly discrete. 

(6) X is H(<o)-a 

(7) X is hereditarily R-e 

(8) For any countable family {^nS of* uniformly bounded and uniformly 

continuous real valued functions on X with (̂ supp fnV uniformly 

discrete, the function £L-?n is uniformly continuous, 

(9), For every Y C X, f:Y—> R uniformly continuous,. g:R—>R 

continuous bounded.* the function gf is uniformly continuous* 

Spaces being hereditarily D^-d have again very nice properties 

and form a coreflective class. These spaces are studied in [FF\r| * 

We recall at least some most interesting properties of them; 

Tneorem 2: The following properties of & uniform space X are equivalent 

(1) X is hereditarily D^-d 
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(2) X is H(o) - tf 

(3) For every Y<i.X„ the set U(X) of all uniformly continuous real 

valued fisnetiona is m ring^ 

(4)j For any aequenee f^UfX) such that fa are bounded and the 

family \supp f_\ is uniformly discrete, the sum aC-fL is 

uniformly continuous. 

(5) U(X) is a ring and for any Y u X , f eU(Y), there aitiata an 

extension f 6U(X) of f* 

KVe shall denote these two coreflactions? H( <o) - ® end H(<*>) -

respectively. 

In order to make some conclusion® from the remark after Proposi 

tion 1„ wa must know, what is Sub(coref ̂ J ) • It is, clear that 

it is a very large eorefleetive class containing all metric spaces. 

Under some set theoretic, assumptions:, SuMcoref (Dp)) may be even 

the class of all uniform spaces. Assuming CSEQ] , the nonexistence 

of Mazur'a sequential cardinals, then coref(Dp) is productive 

(aiee [ H ] ) , hence Sub(eoref (Dp)) contains all uniform spaces. Thua 

under this assumption we have: 

Theorem 5: fSEQ] The class H(*W - a is the largest nontrivdal 

hereditary eorefleetive subcategory of uniform spaces. 

Further application of our construction may be the following, 

suggested by Corollary 2: Hairing any class d of uniform apsces 

closed under subspaces. If neither Dp nor « D N are in CL , then 

whenever H(^)-t^ C OL $ then &(v)-tf ±& the largest coreflectiTi 

class contained in CL • For example we can prove the following: 

Theorem 4: H(o/)-t*> is the largest eorefleetive class contained 

in the following classes: 

(a) The class of all X such that for any subspace X of X, f*U(Y)f 

there is an extension f €U(Xl of f. 
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(b) The c lass of a l l X such that for every free uniform measure y, 

on X the support supp(u*) of the corresponding Radon measure on 

the Samuel compact i f icat ion X of X l i e s in the completion X of X. 

(c) The c lass of a l l spaces with the property that each bounded 

subset of i t i s preeompact. 
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