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FIFTH WINTER SCHOOL (1977)

ON SUBDIRECT IRREDUCIBILITY IN SEMIREGULAR
- CATEGORIES
by
Jif{ VINAREK

Sometimes an important subcategory of a given coocrete
category can be characterized by non-gxistence of & sub=
object or all the subobjects of a given type. E.g. the cate-
gory of reflexive directed graphs contaiss all the directed
grephs which do not contain any one-point graph without a
loop as a subgraph. The similar situation is for sntireflexi-
ve graphs, symmetric graphs, graphs without triangles.
T,~topological spaces are all the topological apaces which
do oot contain the two-point indiscrete space as. a sub-
space, torsion groups are all the groups which do not coa-
tain the additive group of integers ss a subgroup ,etc.

For an object A of a concrete category(C,U) denote by
AN (g,U),shortly A4 C, the full concrete subcategory of
c;,U) generated by all the objects B such that there is no
subobject A—=B, and by the terminal object of C. Every
such a category is closed to subobjects. Now, the very
patursl question arises : for a concrete category chara-
cterize all its objects A such that the subcategory A4 C is
closed to products. This problem was discussed by A.Pultr
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and the author of this pote in [ 7].It was proved that for
the most of "every-day life" categories the productivity
of C 1s for a finite A equivalent to the natural ex~
tension of Birkhoff s concept of subdirect irreducibility
to categories. We are going to give some characterizations
also for infinite objects, _

Definition 1 (ef.[7]). A subobject in a concrete category
(C,U) 1s.a monomorphism m:A — B such that for every

£: UC —> UA for which there 1s..a y:C —> B with

Uy-= Uuof,there exists a ¢: C —> A with Up = £,
Definition 2. Let (C,U) be a concrete category. For a set X
define a preordered class CUX.=({A|UA = X}, <) putting
A4 B 1iff there 1s an o: A — B with Uxx = 1;.

Ao object A 1s sstd to be weakly maximal if for every
B> A there exists a subobject A —> B,

Ao object A is sald to be meet-irreducible (weakly
meet-irreducible resp.) whevever A = /\Ai in CUX implies
existence of an i,€I such that A = Ai (such that there
exists a subobject 4 ~—= Ai resp.).

Definition 3. A concrete category (CsU) 18 said to be
semiregular if it has +the following properties :
(S 1) U preserves limits.
{S2) If X 1s a set and f: X —3> UA en inovertible
mapping theo there is aon isomorphismywith Uy =f.
(S 3) Ifxis an isomorphism and Uct= 1y, theno= 1,.

{S 4) Every CUX is o set.
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(S 5% For every mrpi;iu ¢ there is » mibobject decom-
' position ¥ = (4£ with (4 a subobject snd U onto.
Definition 4. a) An object A of a concrete category (C,U)
is said to be subdirectly ilrreducible (SI; cf.J11,[71,[81)
if for every subobject o
wt A —-?Trrai
" such that all P4/ are onto (pi are projections), at least
one pyM 1s an isomorphistm.. )
b} An object A 13 sald to be weakly subdirectly
irreducible (¥SI) if A1 € is closed to products.
Theoren 1{e¢f.[7]) . Every subdirectly irreducible object
of & semi:;:'egular category is weakly subdirectly irreducible.
Theoren 2. An o.b.ject A of & semiregular productive categoxw'
{C,U) 1s subdirectly irreducible iff _
either A is maximal {in CB(UA) ) and for sny monomorphic
syatem (i.e. & systém auch that (uiot =(N-iﬁfor ali
ieI™ a =f) there is an i & I-gnch tpatr'&io is
a mnnumorphiam, _ .
or A 18 not maximal s it ia meet-irreducibls and far
anyy i A -—a-B with Uy not one-to~one there is-a
Lt A=>0C, L% 140 with Ui= 1y, and 1 C —>p
such thatyr- =Fa o
Theorem 3. An object & of a semiregular productive cutegory
(C,V) 1s weakly subdirectly irreducible iff
either A is weakly maximal and for any monomorphic syatem
{,411 : A _"51)1&11 there is an i eI and a subob-
Ject Vi A-—>B 1, ’
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or A is not weakly maximal, it is weakly meet-irreducible
and for any y ¢ A —>B such that B€ A" C there is a
(: A—>»C with UL = lya» C€A0C , and : C —> B
such that et =¥, |

Using Theorem 2 we can find the following list of weak-

ly subdirectly irreducibles : e
Ao directed graphs : f\
. 0 ’&D-——?O <« &8 g

B. symmetric graphs :

P n [s) o} e __ o _»o 0o
g4 SZ 53 Sl_)\ SS- .Sé
C. symmetric graphs with loops :
) A on —2r 2-—n v
SZ S3 . §§ ) Se

D. symmetric graphs without loops :
every complete symmetric graph without loops

E. reflexive posets :
(o2 570
¥, A
F. antireflexive posets :

every antireflexive linearly ordered set

G, partial unary algebras :

. 2 u‘i." :OQ
At A A
1 2
—
n o :
s Vand
Ay | - Ay
#=74p primg)
a 7>
hd ok ! 9
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H. topological spaces 1
topological spaces with cerdinality of én under-
1ying set less or equal to 2 _
A1l the weakly subdirectly irreducibles in categories from
examples A.-H. are subdirectly jrreducibles,

Another situation is e.g. in the category Top1 of Tl—
spaces or in the category Top3 5 of completdly regular Tl
spaces s - .
Theorem 3. An object A of Topy (T°p3,5 resp.) is SI iff the
cardinality of its underlying set is less or equal to 2.
Theorem 4. An object A of Top; is WSI iff it is either
one- or two-point space, or an infinite space with the
maximal Tq—topology.

Theorem 5. An object A of Tcp3 5 is WSI iff it is either
one~ or twp—point space, or it is homaomnrphic to a one-
dimenaional subspace of the;unit interval.

Bémark. For proving Theorem 5 one have to ﬁse the Tychonoff
thecrem and scme cnaracterizgtions of locally connected ’

metrizable continua.
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