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FIFTH WESTER SCHOOL (1977) 

OK SUBDIRECT IRREDUCIBILITY IK SEIOBEGOLAH 

CATEGORIES 

by 

Jif i VINiREK 

Sometimes an important subcategory of a given concrete 

category can be characterized by ooo-existeoce of a sub-

object or all the subobjects of a giveo type* E*go the cate­

gory of reflexive directed graphs cootaids all the directed 

graphs which do oot cootaio aoy ooe-poiot graph without a 

loop as a subgraph* The similar situstioo is for eotireflexi-

ve graphs, symmetric graphs, graphs without triaogles* 

T0~topological spaces are all the topological spaces which 

do oot cootaio the two-poiot iodiscrete space as a sub-

space, torsioo groups are all the groups which do oot coo­

taio the additive group of iotegera as a subgroup ,etCo 

For ao object A of a concrete category(C,U) deoote by 

A^ (C,U), shortly Ai Cf the full coocrete subcategory of 

fe,U) generated by all the objects B such that there is DO 

subobject A—-^B f and by the terminal object of £• Every 

such a category is closed to subobjects a Kow, the very 

oatural question arises : for a coocrete category chara­

cterize all its objects A such that the subcategory An C is 

closed to products. This problem was discussed by A.Pultr 
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aod the author of this oote ioC7]%It was proved that for 

the most of "everyday life" categories the productivity 

of A-iC is for a fioite A equivaleot to the oatural ex~ 

teosioo of Birkhoff's coocept of subdirect irreducibility 

to categories* We are golog to give some characterizations 

also for iof ioite objectse 

Defioitioo 1 (cf*C?3)* A eubobject io a coocrete category 

(C,Uj is .a mooomorphism ,AH.;A —->• B such that for every 

f: UC — * UA for which there is. a y :C — * B with 

U^= U^f,there exists a tp: C — ^ A with Vf » f* 

Defioitioo 2* Let (C,U) be a coocrete category* For a set X 

defioe a preordered class CUX*-*({AfUA « X}$ -i ) puttiog 

A -̂  B iff there is ao oc j A ——> B with Voc » L t 

Ao object A is said to be weakly maximal if for every 

B^A there exists a subobject A — » B . 

Ao object A is said to be meet-irreducible (weakly 

meet-irreducible resp«») wheoever A » A A ^ io CUX implies 

existeoce of ao iQ€I such that A » A^ (such that there 
o 

exists a subobject A —-* A* resp*)» 
*o 

Defioitioo 3c A coocrete category (03V) is said to be 

semiregular if it has the followiog properties : 

(S 1) U preserves limits* 

(S 2) If X is a set aod f: X — ^ UA ao iovertible 

mappibg theo there is ao isomorphism y> with Uy>=f. 

(S 3) Ifocis ao isomorphism aod Uoc- 1UA, theooc* 1^* 
(S 4) Every CUX is a set* 
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(S 51 For every morphim f therw im m aubobjeet decom-

posltion <f - C*-l with (}*> a mibobject and Ue. onto. 

Definition 4# a) An object A of a concrete category (CtU) 

is said to be subdirectly irreducible (SI; cf•DJ , £7j ,[8]) 

if for every subobject 

/U. : A — ^ T T A 4 1 J x 

such that all p ^ are onto (p^ are projections), at least 

one p*(* is an isomorpnism* 

b) An object A is said to be weakly subdirectly 

irreducible (KI) if A"? £ is closed to products. 

Theorem l{cf»C7]) • Every subdirectly irreducible object 

of a semiregular category is weakly subdirectly irreducible. 

Theorem 2. An object A of a semiregular produetive category 

(C,U) is subdirectly irreducible iff 

either A is maximal (in Ctí(UA) ) and for any monomorphic 

systém (i»e« a systém such thatfM̂ cx = (**& for all 

i é l ^ ^ =(3) there is an iQe I such t h a t ^ is 
o 

a monomorphism, 

or A is not maximal, it is meet-irreducible and for 

any f : A — > B with Uy. not one-to~one there is^a 

L : A — * C, L * 1A, with U u a i U A and f : C — ^ B 

such thatp- =f 0 

Theorem 3» An object A of a semiregular produetive category 

(C,U) is weakly subdirectly irreducibl* iff 

either A is weakly maximal and for any monomorphic systém 

(ju • A — - ý B ^ ^ j there is an i QéI and a subob­

ject V : A — * B . , 



112 

or A i s not weakly maximal, i t i s weakly meet-irreducible 

and for any f : A —=£>B such tha t B ^ A i C there i s a 

Ui A —=yC with UL = 1U A , C£ A-7C , and f : C —-> B 

such tha t p**' 6. = ^ 0 

Using Theorem 2 we can find the following l i s t of weak­

ly subdirect ly i r reducib les : .Q. 

A* directed graphs : / \ 
Q- 'Sr >a <—*ft ( « — * a4—-^2 

B. symmetric graphs : 

0 P O ^ Q Q 0 Q O 0 

% % *% 5̂  5̂- 5̂  
C symmetric graphs with loops : 

o no a P Q_-._.a_c? 

S2 S3 Sr S6 

D. symmetric graphs without loops : 

every complete symmetric graph without loops 

E. reflexive posets : 

Q, <*—>* 

F. antireflexive posets : 

every antireflexive linearly ordered set 

G. partial unary algebras : 

1 
A< A, 

*t 

r% m-ñ 4 O 

*г 
* *2г 

y •• 
Ч..-Ч-

Þ-i(f> f>ŕ'*»é) 

Уl . 2 . 

<"-- , 

; < * 
* M '(rř>ri*»ţ) Ą^ 
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Em topological spaces ; 

topological spaces with cardinality of an under­

lying set less or equal to 2 

All the weakly subdirectly irredueibles in categories from 

examples A#-H» are subdirectly irreducibles. 

Another situation is e.g» in the category Top, of T-*-

spaces or in the category Top^ ̂  of completely regular t^-

spaces : 

Theorem % An object A of Top-ĵ  (Top^ - resju) is SI iff the 

cardinality of its underlying set is less or equal to 2« 

Theorem «U An object A of Top^ is 131 iff it is either 

one- or two-point space, or an infinite space with the 

maximal T-, -topology« 

Theorem 5. An object A of Top- ̂  is IffSI iff it ia either 

one- or two-point space, or it is homfcomorphic to a one-

dimensional subspace of t&e unit interval« 

Remark* For proving Theorem 5 one have to use the Tychonoff 

theorem and seme characterizations of locally connected 

metrisable eontinua. 
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