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Some combinatorial questions related to measure theory 
Chrictoph Bandt 

Greifswald, German Democratic Republic 

1 • In this lecture we consider a set X , an algebra Jfy of 
subsets of X* , a set function tf : $ —-> £o,«-»C defined 

on a subfamily of J^ and (finitely additive) measures on 
&, which dominate Jp or are# dominated by tj. We define 

0C(«p) « sup \JfcX J U* measure on tr*f /̂ -*J on $ J 
|K$) - inf £jfX | y measure on «4, J^4 y on <g j 

2* Let k be an integer- A finite sequence •£= (A.,, • •. ,A ) 
of elements of & is called a k-fold covering (exact co­

vering, matching, respectively) of X by elements of & , 

if the sum 2L 1^. of the characteristic functions is 

greater than (equal to, smaller than) --*1T (cf .C2li.P»419) 

We define B ( ^ , f ) s t g ^ . 

Theorem V There are measures A& and J/* with 
a) 0C(y) -*y--*X * inf -ts(£,Jp)| € is a multiple covering of x } 

b) £($) - J**X » sup SsO£,y)| -C is a multiple matching of X "J 
c) If ip is monotone and <3 -A w e need only consider exact 

coverings in a) and b). 

This fact is contained in a more special form in C41»U>31E7J. 

Let us emphasize that it provides a connection between 

measure theory and combinatorics (*C is just a hypergraph). 

3. Theorem 1 yields a weak generalisation of the well-known 
maximal network flow theorem of Ford and Fulkerson. 
Given a network G-=(V,E) with source q, sink s and capa­
city function c:E—* Collet X denote the set of all ele­
mentary paths C2Q from q to s. To an edge e corresponds 
the set Be» -jw€.X| e is in w ] , Let <& a^B el e£E^ and 

V B . . s c ( e ) . Flows in the graph-theoretic sense correspond 
to measures on (r (X) dominated by if on 0$ • By theorem 1, 
the maximal flow in G is the infimum of capacities of 
"multiple cuts" (k-fold cut =- sequence of edges which meets 
every path in X at least k times). This is true for mul-
ticommodity networks and infinite networks, too* 



Ford-Fulkerson's theorem on "simple cuts" follows from 

the special structure of usual networks: every k-fold cut 

splits into k disjoint simple cuts. 

4« For every \f, *(y)=otO£) and £(<f)= $(y) , where r̂  and y 
are the outer and inner measure on & generated by *f • 
Thus, in the following V) denotes a submeasure and y a super-

additive set function which are normalized: hX=f/X-- 1 • 

On infinite algebras 0-T*there exist 'Urwi"fch P(V)= 00 » and 

non-trivial examples of i^with OC(I))=0 (so-called patholo­

gical submeasures) were given by Popov £61 , Herer and 

Christensen p i and Topstfe £7} . For X= T =fl,...,nj and 
A«(P( . l^) , however, oC-Og)̂  JJ and (J(y)-*n clearly holds. 

Hence, the following numbers seem to be of interest. 

CC =- inf icKq) I n normalized submeasure on <P(2L) j 

£ = sup ipCy) 11f normalized and superadditive on $(-0$ 

At the 3rd Winter School in Stefanova, 1975, Vasak and 

Preiss discussed the numbers ci and raised the question: 

Which is the first number n with CC^ £(n,-| \ ? We think 

It is eleven but can only prove it lies between 6 and 11 • 

Asymptotic behavior of OC is easier determined. 

Theorem 2 a) 1 < lim #n»log n ̂  lim o£n
#log n 4 2»log 2 

b) lim fin :-f? =- 1 

5* The proof of theorem 2a in £1Q uses the fact that for a 

submeasure 1) on ̂ (-tO with small cC(f)) there exist large 

sets with small l̂ -values and small sets with large n-va-

lues. This fact also implies for an arbitrary h : 

Theorem 3 -
£(*))* *(^)-exp ( ĵ -ly - 2 ) for tfd^F-O 

(5(*j) -= «0 for «,(V$*4 

The last assertion may be considered as a contribution to 

the well-known question of Kaharam, wether for every con­

tinuous submeasure on a ^-algebra of sets there is an 

rf-additive measure with the same zero-sets. By theorem Z 
of[3]and theorem 4 of £6J, this question is equivalent to 

the problem, wether all pathological submeasures are dis-

continous. This concerns sequential continuity with respect 

to order-convergence, but it suffices to show that patho­

logical submeasures are not exhaustive* that means, 



there is a disjoint sequence (A..). ., 0 of elements of 

with *£A.t* t for all i and a certain positive number £• 

The above assertion is much weaker, of course. It only 

implies the existence of a disjoint sequence (Ai) with 

r ^ - ^ i = °° • • 

6. Let us present a combinatorial question. A positive- answer 

to that question would imply the statement, that for every 

pathological submeasure*on J\r and every integer n there 

are n pairwise disjoint sets in A with rj,-value > -1 . 

(This is near to a positive solution of Llaharam's question.) 

Let K- ,Mp, •.. Jl be subsets of a set X. We assume that 

the intersection of (d+1) different K.-s is always empty. 

Let y*be a subfamily of (P(X) with the following property; 

if Afci-i (1*i*n) then A € ̂  or M±-A C )f" . Let q( f) be 

the maximal cardinality of a disjoint family of elements of 

V -
Given n and d determine q = min ̂ q(V') 1 X,Mi and V"

a si 
• n above J 

q is not greater than 5 . Is it equal "to § • 
(This is true for d=2). Does there exist a positive number 

J* with q * f* • | ? 
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