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A. Clausing 

The aim of this talk is to give a short survey on a class of con­

vex sets in I.e. spaces, which has come to interest in the last 

few years. 

Definition; Let K be a convex subset of a l.c.s.. K is called 

stable, if the midpoint-map m : KxK -* K is open. 

For the whole space, this is of course always true, but not so for 

all convex subsets. Here is an example: 

—-r— is not a neighborhood 

of 2-P-= z. 

Proposition; The following are equivalent: 

(1) K is stable. 

(2) The map KXKX[O,I3 —*.£, (xfy, X ) —• Xx+(1- A)y , is open* 

(3) For any convex subset C of K , the (relative) interior of 

C is convex. 

(-+) For any open subset U of K , the convex hull of U is 

o]fen. 

Remark; K stable = > ex K closed. 

Follows from ex K - K\m(Kxtf\AKxK). The double-cone above has a 

non-closed extreme point set. 

From now on, assum« K to be compact. 
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Theorem: (Vesterstrrfm, O'Brien, Eifler, Uhlenbrok, Debs; 1976): 

The following are equivalent: 

(1) K is stable. 

(2) The resulting map r : M (K) -• K is open. 

(3) rj M ,y.. is open (Max(K) := maximal measures). 

(-O For all £.fc C(K) : f € C(K) . 

The theorem implies, that Bauer-simplexes M (X), (X compact) are stablf 

In fact, this is the essential step in the proof. It* is also true 

that for every Hausdorff space X, the set M (X) of all Radon 
1 + 

probability measures in the topology a(M (X), C* (X)) is stable. 

The above conditions are often hard to check. One is in a better 

situation iri the 

Finite dimensional case. 

Let K( = [x 6 K : dim face (x) -= n} denote the n-skeleton. -

E.g. K ( o ) = ex K. It is easy to show, that K stable T=P- K ( n ) 

closed for all n = 0,1,2,... . 

If KC]R n, then K ( n ) = K, K ( n _ 1 ) = dK, and K ( n" 2 ) are always 

closed. 

Theorem: (Papadopoulou; 1977): 

For K C Rn are equivalent: 

(1) K is stable. 

(2) The correspondence x h* face (x) is l.c.s. 

(3) All skeletons of K are closed. 

Reiter-Stavrakas pr ved the eq ivalence: 

(4) The space If of faces of K in the Hausdorff-metric is 

compact• 
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Corollary: 

(1) All K C * 2 are stable. 

(2) If K C R 3 : K stable <=> ex K closed. 

(3) If K C R is a pblytope or stricty convex, then K is 

stable. 

(4) (Jamison): The set conv{r(t) : t € [0,1]} is stable, 

where r(t) = (t„t , ...,tn) is the moment curve. 

Stability is preserved under finite direct sums, products, open 

affine maps, affine retractions. 

This gives also infinite-dimensional examples, but no good 

characterization is known for them. 

Applications: 

The significance of stable convex sets rests on the fact, that 

a surjection f : X -* T is open if and only if the correspondence 

f" : y -» X, y •* f (y)> is l.c.s. This allows to apply selection 

theorems of Michael,. Lazar, and Lazar-Lindenstrauss.' 

The metrizability hypotheses in the following come from these 

selection theorems. 

yk) Extremal operators 

Let S be a Choq^uet simplex. 

«ft(S,K) = set of all affine t continuous maps S -• K. 

Theorem': (Papadopoulou and Clausing): 

If K is stable and metrizable, then 

ex «ft(S,K) = £T € <ft(S,K) : T(ex S) c ex K}. 

Counter ex.: There is a simplex St such that for all compact, 

metrizable, infinite X there is 

T € ex A(S tM 1(X)) with T(ex S) 4 ex M.L(X). 
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Remarks: 

(1) Using operator representation theorems one obtains from the 

above theorem a characterization of the extreme operators 

from certain Banach spaces into simplex spaces as "nice" 

operators. 

(2) Theorem (CI.) r " The space «*ft(S,K) in the uniform 

topology is itself stable, if K is stable and metrizable. 

(B) A Dirichlet problém 

A(K) ;= affine maps in C(K). 

A closed subspace H with A(K) C H C C(K) is a Dirichlet space 

(D.S.) for K , if 

(1) v f 6 C(einc) 3 f1* € H ; '^ji^K = f 

(2) f ^ 0 i^ fH i 0. 

Example: K = unit ball in R . 

H = {f € C(K) : f is harmonic in the interior of K} is a D.S. 

for K. 

For f 6 C(exT) put 

Df := {g € C(K) : g = fH for some D.S. H) 

Clearly Df
 c [f,f], the interval taken in C(K). 

Theorem: (MSgerl, Papadopoulou, Cl^) : 

If K is stable and metrizable then there is a D.S. 

for K and moreover: 

D f is (uniformly) dense in [£,?] 

for all f € C(ex K ) . * 

Counter**. (Papadopoulou): Let K = unit ball in R . 

There is an f € C(ex K) such that 

f € C(K)\Df. 
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