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On semigroups of operators generated 
"by second order differential operators on Lie groups 

Jan Kisynski / Warsaw / 

Let R be a strongly continuous representation of a Lie group G 
on a real or complex Hilbert space H , D«t?$-) the set of all C*- vec­
tors of H , and dR the differential of B # Let XQf X1f..#fXj- be 
a set of left-invariant vector fields onG « Let A a (BL ) be N X H • 
matrix, hermitian positive definite or symmetric positive definite, 
depending of whether the space H is complex or real. Consider the 
left invariant differentialNoperator jo 

p = 2- a X X^ + f c i + Xn , N nn^i mn m n fe n n 0 
and let dR(P) be its image by the differential of R • The domain 
of dR(P) is D^CR) f by definition. 
THEOREM 1. Under the above assumptions dR(P) is a pregenerator of 
a one-parameter strongly continuous <£(&) -valued semigroup. If H is 
a complex Hilbert space and XQ ^ ^ ^ j ^ I ^ t ^ J with b^e/R, then that 
semigroup has holomorphic extension onto a sector -{t:0^t€C,/Ar^/-<-c<J 
with some 0(6^f|rrj* If X A = 0 a» d the space H is either real or complex f 
then dR(P) is a pregenerator of a strongly continuous ^(H)-valued 
cosine function. 
<.hen the representation R is unitary, XQ= 0, and the coefficients. 

c^ are purely imaginary, then d R(P) is symmetric and jia^msw^*^ 
3?he property that dR(p) is a pregenerator is then equivalent to 
essential selfadjointness of dR(P). Thus our theorem implies the 
result of P.J^rgensen [journal of Functional .Analysis 20(1975)» Corol­
lary 1.1, p.113 J. Let us indicate that while JjJrgensen's proof is 
based on a strong result of Hormander about hypoellipticity of some 
second order differential operators, our method uses only some abstract 
semi-group theory and elementary integration by parts of the type of 
L.Garding[Bull# Soc. Math. France 88(1960) f p* 73-93 J • 

As an extra product we are able to give a purely analytical proof 
of an estimation for convolution semigroups of probability measures 
on non-compact Lie groups, which generalizes and reinforces the result 
proved by E.lTelson ["Annals of Math. 70 (1959)» P. 572-615# lemma 8.1 J 
by advanced probabilistic methods# Hamely, let p^ , t)o, be a convolu­
tion semigroup of probability measures on G We shall say that p^ is a 
Lindeberg semigroup iff 

P^ (ff) = 1 - o(t) as t^O , 
for any open neighbourhood U of the neutral element e of G. / To any 
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convolution semigroup p^ of probability measures on G there corresponds 
a G-valued Markov process with transition probabilities PL(xfE)= p,£T^l&f 
and it can be proved that /almost/ all trajectories of this process are 
continuous iff the semigroup p» is Lindeberg./ Let C^G) be the space 
of all continuous functions on G having limit 0 at infinity. To convolu­
tion semigroup p , one can associate the €-L((̂ (G)) -valued semigroup S (t) 
defined by 

£s(t)$x) = £yfcr) Pi(dy) f y>€C0(G) . 
If p.£ is Lindeberg then according to G.A.Hunt ]jrrans., Amar. Math. Soc. 
81 (1956) 9 p.264-293 f section 3] there are left-invariant vector 
fields XQ fX,, ,. . . ̂  on G such that ^ | / £ s (t) ¥>](x)- fbO] = Q&\)^) 
for every ip€ Ĉ (G) . Let xCz) be the distance from e to x in the sense 
of an arbitrarily fixed left-invariagt Riemann metric on G and put 

a = ta rA^xv^^ •' 
THEOREM 2. With the above notations TOT any Lindeberg convolution 
semigroup pr , t->0, of probability measures on G we have 

for every finite T > 0 and every £>0 . 

To illustrate this result, let G = J? , Tfx) =/x| and P̂ (E)=|(7rt)"" 

Cexp£ — ^ ^ J d x , which corresponds to diffusion with simultaneous 

convection. Then a = 1 and ^ x P f ^ g ) ] ^ t ^dx) = ̂ ^ ) expC~4e~] * 


