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A-CLOSED GRAPH THEOREM
M. WILHELM

Wrockaw

Let X and Y be topological spaces. For a net {(x‘,za)}

‘in XX X we write
(xs,35) = Ay .

iff one of the following two equivalent conditions is sa-
tisfied: '

(1) for any open set V containing the diagonale there
is an index 6, such that (xg,x3)e V for all 63 6&;

(i1) for any open cover € of X there is an index &, such
that for every 6 2 G, the set {xé,xg} is of diameter less than
E.

\

DEFINITION, A function £ on X to ¥ has a A-closed graph
irs

(xg,x3) = Oy and (2(xg) ,2(xg) —> (¥,3°) imply (3,3") €

by,

Proposition 1. If £ is oontinuous and Y is a ‘rzi-space
(= Urysohn apace) then £ has a A-closed graph., If f has
a A-cloa.ed graph, then f has.a closed graph.

Proposition 2. Suppose X and Y are topological groups.
A homomorphism f from X into Y has a closed graph iff £ has
a A-closed graph.

’

Proposition 3. Suppose X is a T i-apace. If the image of
every closed set is closed and the counter image or any point
is compact, then f has aA-olosed graph.
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A set is called nearly open iff it is in the interior
of its closure. A function is called nearly continuous
(nearly open) iff the counter image (image) of any open
set is nearly open. 4 seéuence{??n} of open covers of Y
is said to be complete iff any family?’ of closed subsets
of Y, which nas the finite intersection property and cone
tains sets of diameter less than:ﬂa for n =« 1,2,..., has
non-empty invernaction.t}QE} is said to be strongly coun-
tably complete iff any sequence LFn} of closed subsets of
Y, which nas the finite intersection property and consists
of the sets Fn of diameter leass than.ﬂﬁﬁ has non-empty ine
tersection. ¥ io saild to be strongly countably complete iff
thers exists a strongly countably complete sequence of open
covers of Y.(cf. [6]). A T;grepace Y is Sech~complete iff
there exists & complete sequence of open covers of Y (Frolik
{s]). X is called a Fréchet space iff for every AC X and
avery x € Z there exists a sequence X,, X, .e. of points
of A converging to x.(cf. C“]).
The following theorem g;ves a relationship between continuity,
nearly continuity and A-closed graph property, and is the
basic result of the present paper. )

THEOREM, Let X and Y be topological spaces, Y a Ts;spaoe.
Suppose that

(1) Y has a complete sequence of open covers,
or

(11) X is a Fréchet space and Y is strongly countably
complete.
4 function £ on X to Y is continuous if and only if £ is

nearly .contiruous and has a A-closed graph.
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The theorem implies many closed graph and open mapping theo-
rems; we list onlﬁ most general ones. Up to now, some impore-
tant results concerning topological spaces and topological
groups.(and vector apaces) have been considered indepen-
dently, using essentially different methods Csee. e.8., the
proofs of Corollaries 1 and 3 given in [3], [7] and [2]).

Corollary 1 (cf. E}]). Let X be a T,-space, and let Y be
a 5ech-comp1ete space. For a mapping £ on X to Y the follo;
wing conditions are equivalent:
(1) £ is perfect;

(11) £ is nearly continuous, has a closed graph and the
counter image of any compact set is compact;

(1i11) £ 4is nearly continuous, the image of any closed set

is closed and the counter image of any point is compact.

A}

Corollary 2. Let X be -a Frechet Ta-space, and let Y be a
strongly countably complete Ts-apace. For a mapping £ on X
to Y conditions (1) and (iii) of Corollary 1 are equivalent.

Corollary 3 (cf. £7) and E2]); Let X and Y be topological
groups, Y Sech-complete. A homomorphism £ from X into Y is

continuous iff £ is nearly continuous and has a closed graph.

Coroflary 4, Let X be a Fréchet topological group, and
let Y be g strongly countadbly complete To-group. A homomor=-
phism £ from X into Y is continuous iff £ is nearly conti-

nuous and has a closed graph.

Corollary 5 (of. [7] and [2]). Let X and Y be as in Co-
rollary 3. A4 closed graph homomorphism g from Y onto X is

open 1ff g is nearly open.
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corollary 6([2]). Let X and Y be as in Corollary 3. 4 con-
tinuous homomorphism h from Y into X is open iff h is nearly

oben. In other wprds, every Cech-complete group is B-complete.

corollary 7 (cf. Banach [11, Ptdk [8] and [9]). Let X
and Y be topological vector spaces, Y oompletely metrizable.
continuous
A linear mapping h from Y into X is open iff h is nearly
open, In other words, every completely metrizable vector

space is B-complete.

REFERENCES
(1] Ss.Banach, Péorie des opérationa.lineares, Warszawa 1932,
2l L.G.Brown, Topologically complgte groups, P, A. M, S. 35
(1972§.
[3] T.Byczkowski & R.Pol, On the closed graph and open map-
ping theorems, Bull,Acad.Polon.Sci. 24 (1976).
[4] R.Engelking, General topology, Warszawa 1977.
[5] z.Frolik, Generalizations of the Gg-property of complete
metric spaces, Czech.Math.J. 10 (1960).
(6] Z2.Frolik, Baire s‘paces and some generalizgtions of comp;
lete metric spaces, Czech.Math.J. 11 (1961).
[7]} T.BHusain, Introductioh to topological groups, Plhiladelo
rhia 1966. '
[8] V.Ptak, On complete topological linear spaces, Czech.
Math.J.3 (1953). -
[é] V.Pték, Completeness and the open mapping theorem, Bull.
Soc.Math,France 86 (1958).
[10] M.Wilhelm, On closed graph theorems in topologicél spa'-
ces and gropps, Md.Math. (to abpear). v
[11] M.Wilhelm, Relations among some closed graph and open
mapping theorems, Coll.Math. (to appear).



