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A-CLOSED GRAPH THEOREM 

M. WILHELM 

Wroclaw 

Let X and T Ъe t o p o l o g i o a l apac . For a n t {(Xć»xé)) 

' i n XX X we write 

Cъ.*i)-+Az 

i f f on of tћe fo l lowing two equivalent oondit ions i з sa-

t i s f i e d : 

( i ) for any op n s e t 7 containing the diagonal A~ there 

i an index € uch tћat ( i ^ x J ) é V for a l l <ѓ^60\ 

( i i ) f or any open cov r fc of X tћere i s an index 60 зuch 

tћat for very 6 > 6C the s t -{x^.xjji of diameter l e s s than 

e. 
DEPIHITIOИ. A fшiotion f on Z t o 7 haв a Д-cloэed grapa 

i f f 

<-*•-.})—>/-x and (fCx^,) , f ( x ^ —> C y . s ' ) i в p l y CЗ,Г)Є 

-ч. 
Proposition 1. If f ia oontinuous and Y is a T0£-space 

(ш ГJгysohn spac ) , then f has a 4-clos d graph. If f ћas 

a Л-cloaed graph, th n f haзa clos d graph. 

Proposition 2. Suppose X and 7 are topological groups. ' 

á homomorpћism f from X into Y ћas a olosed graph iff f has 

a Д-closed graph. 

Proposition 3. Suppoзe X is a T2£-apace. If the image of 

every closed s t ia clos d and the counter image of any point 

is compact, tћen f ћaa a A-olosed grapћ. 



A set is called nearly open iff it is in the interior 

of its closure. A function is called nearly continuous 

(nearly open) iff the counter image (image) of any open 

set is nearly open. A sequence {,-#} of open covers of Y 

is said to be complete iff any family f of closed subsets 

of Y, which nas the finite intersection property and con­

tains sets of diameter less than & for n « 1,2,..., has 

non-empty interaction.t^nJ is said to be strongly coun-

tably complete iff any sequence t-O of closea subsets of 

i', which nas the finite intersection property and consists 

of the sets f of diameter less than stir, has non-empty in­

tersection* Y is said to be strongly countably complete iff 

there exists a strongly countably complete sequence of open 

covers of Y,("cf. [6]). A T^j-space Y is fiech-complete iff 

there exists a complete sequence of open covers of Y (prolfk 

[£)) • X is called a Frechet space iff for every A c X and 

every x e X there exists a sequence x^, x^, ... of points 

of A converging to x. (of. W ) » 

The following theorem gives a relationship between continuity, 

nearly continuity and .d-cloaed graph property, and is the 

basic result of the present paper. 

THEOREM. let X and Y be topological spaces, Y a T,-spaoe. 

Suppose that 

(i) Y has a complete sequence of open covers, 

or 

(ii) X is a Frechet space and Y is strongly countably 

complete. 

A function f on X to Y is continuous if and only if f is 

nearly ̂ continuous and has a A-olosed graph. 



« 

The theorem implies many closed graph and open mapping theo­

rems; we list only most general ones. Up to now, some impor­

tant results concerning topological spaces and topological 

groups (and vector spaces) have been considered indepen­

dently, using essentially different methods (see, e.g., the 

proofs of Corollaries 1 and 3 given in [3J, [7j and £2j). 

Corollary 1 (cf. [?!)• L e t X be a T^-space, and let Y be 

a tfech-complete space. For a mapping f on X to Y the follo­

wing conditions are equivalent: 

(i) f is perfect; 

(ii) f is nearly continuous, has a closed graph and the 

counter image of any compact set is compact; 

(iii) f is nearly continuous, the image of any closed set 

is closed and the counter image of any point is compact. 

Corollary 2. Let X be a Frechet Tp-space, and let Y be a 

strongly countably complete T,-space. For a mapping f on X 

to Y conditions (i) and (iii) of Corollary 1 are equivalent. 

Corollary 3 (cf. £73 and [2j). Let X and Y be topological 

groups, Y tfech-oomplete. A homomorphism f from X into Y is 

continuous iff f is nearly continuous and has a closed graph. 

Corollary 4. Let X be a Frechet topological group, and 

let Y be a strongly countably complete T -group. A homomor­

phism f from X into Y is continuous iff f is nearly conti­

nuous and has a closed graph. 

Corollary 5 (cf. [72 and [2J) . Let X and Y be as in Co­

rollary 3. A closed graph homomorphism g from Y onto X is 

open iff g is nearly open. 
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Corollary 6(C2]). Let X and J be as in Corollary 3. A con­

tinuous homomorphism h from Y into X is open iff h is nearly 

open. In other words, every fiech-complete group is B-complete. 

Corollary 7 (cf. Banach [1], Ptak ft] and £9]). Let X 

and Y be topological vector spaces, Y completely metrizable. 
continuous 

A linear mapping h from Y into X is open iff h is nearly 

open. In other words, every completely metrizable vector 

space is B-complete. 
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