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A GENERALIZATION OF COMPONENT CATEGORIES 

Reinhard Bttrger 

Component categories have been investigated by several authors 
(see [2], [4]), for topological functors G : X * Ens, where Ens 
is the category of sets. He give a generalisation to arbitrary 
functors G s X •* Ens, following an idea of PumplUn and Holmann 
(unpublished)'*,and we are let to a generalization of a Galois 
correspondence given by Maranda. [3]. The results are part of 
my thesis. 

Theorem; Let G : X * Ene be a functor, and & C X a full 

subcategory such that G IA is pointwise non-void, i.e. 

G(A) ?- 0 for all A€02>(A). Then there is a functor 

Q e A
 s X "* En8 &nd a natural transformation CG A t G * Q Q . 

with the following properties: 

(i) For all AE02>(£) the cardinality of G(A) is 1. 

(ii) If. d : G •*• P is a natural transformation, such that 

a (A) is of cardirality 1 for all he Ob {A), then 

there is a unique natural transformation 5 : Q Q A +'P 

with « G # A = a. 

(iii) For all x'eqbiX), CQ A(X) is onto. 

Definition; Let a ; 6 + P • be a natural transformation, such 
that a(X) is onto for all X602>(X). Then Connect (a) 
denotes the full subcategory of £ generated by all X-objects 
A where P(A) is a singleton. 

Now the above theorem can be interpreted as a Galois adjunction, 
between Connect and £G _, considered as meta,-*functors 
between the meta-category of all full subcategories A of X 
' with G|& pointwise non-void and the meta-category of all 
pointwise surjective natural transformations with domain G. 
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I-^LiuitiQ"5 L e t G : X •* Ens be a functor- A full subcategory 

K X is called a G-component category, iff A =- Conn&at (cQ ft) 

(or, equivalently, iff there exist a functor. *> and a natural 

transformation a ? G -> p, such that A iu the full ^ubcategoi y 

generated by all objects Aeob(X) where P (A) is a-singleton) , 

Corollary; If A c X is a full subcateogry and G . X - Ens 

is a functor with G\ A rointwise n o n - v o i d , trum Connect (s 

is Ihe smallest G-coirponent category containing X-

Theorem: Let G • X * £rzs be a mono-fibration (i.e. any injective 

map m : U - G(X) has »_.n initial lifting to an X-morphism 

m : U - X). Let M denote th^ class of ail G-initial liftings 

of injective maps - and let A C x be a full ind replete subcategory 

with. G I A pointwise non void. let A contain all A e o M x ) 

for which P (A) is a singleton. Then the following state., „ ;tu 

are equivalent. 

(i) A' is a G-component category. 

(ii) A is strongly locally Ai-coreflectivo in the ense of [1J, 

i.e. for any XGOb (X) there is ^ family (u± : Z± -> X) ± § 

all Z± are in A, such that for any f : A > X 

with AEOb(A) ther , is a unique pair (i,h) with i 6 1, 

h : A -* Z±, and u.h = f. 

(iii) A fulfills the following conditions: 

X) If AEOb(A), f : A - B is an X-morphism, 

G(f) is onto, then BE Ob(A). 

2) Let XEOb(X), (m± - A. -
 X ) ± G I ' I * & b e a family 

of G-initial morphisms, such that G(m.) is onto 

one for all i EI. if now 

n{G(m±) [A±]} ? 0, U{G(mi)[Ai]} =G(X) then X 6 Ob (A) . 

This characterization leeds to a general investigation of full 

replete strongly coreflective subcate^^riiju of an arbitrary 

category. 
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Definition: Let X be a category. 

m. 
(i) If A G0fa(k) , (Y, (X± -

i-> Y)iGI) is a sink, A is called 

locally uniquely projective with respect to < , 
m, 

(Y, (Xj: -i-> Y) i G I ) , iff for any X-morphism f : A -> Y 

there is a unique pair (i,h) with i et, h m. = f. 
m. 

Equivalently, we say (Y, lx± -J=-> Y)iei) is locally 

uniquely coextendable with respect to A. 

(ii) If A ex is a full subcategory let ?:^oa (k) * ) denote 

the conglomerate of all locally coextendable sinks with 

respect to all . A 6 06(A). 

(iii) If S is a conglomerate of X-sinks, let C^oc (S) 

denote the full subcategory of X generated by all 

locally uniquely projective objects with respect to 

all S-sinks. 

A 
(iv) If M is a class of X-morphisms, let M denote 

mi the conglomerate of all sinks (Y,(X > Y.)). ) with 

m. EM for all i GI. 

(v) Let A be a full replete subcategory of X and M a 

class of morphisms. A is called strongly locally 

M-coreflective, if for any Y G06(X) there is a sink 
m. 7 A 

(Y, (X̂ . -i-> Y)iel)€ ?± 1A) nM with X± eOb(A) for all 

i 61. A is called strongly locally coreflective, iff 

A is strongly locally X-coreflective. 

As Pĵ  and C^ form a Galois correspondence, 

we look at the full subcateogires closed under the 

correspondence. We get the following 
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Theorem; Let X be a category, &.CX a full subca$eqory, 

M a class of X-morphisms. 

(i) If & = ?'^° C± * (A) , then A is closed uríder the 

formation of connected colimits. 

(11) If &. is strongly locally M-coref lective, then 

&= ??°\Q£* (A)nV 

(111) If h has locally coorthogonal (E#M)-factorlzatlons 

(see [5]), then & = ?*°* {C^° (A) nM) Implies 

that h is strongly locally M-coreflective. 
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