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Seventh Winter School on Abstract Analysis 1979 

Some extreme contractions on JL -spaces 

R. Gzaslewicz 

An operator T € &£(£ (A),/ (B)) is extreme contraction if 

it is an extreme point of unit ball (A,B - index sets, JL (A) -

- Banach space (over R or C ) of all p-summable functions 

on A ). Let 1 £ p £ oo . 

For p=oo we can characterize all extreme contractions as 

the lattice homomorphisms taking 1 into 1 multiplied by functions 

of absolute value 1 [M.Shaver, Israel J. Math. 12 (1972), C.Kim, 

Math. Zeitsch. 151 (1976), A.Iwanik, Colloq.Math. 402 • 

For p=l and real Z-^^P^oe extr. contr. can be characte­

rized (by duality) [iwanik, Kim] • 

For p=2 and field C the set of extr. contr. coincides 

with the set of all isometries and coisometries [Kadison,Ann. 

Math. 54 (1951)] . 

For <xGA v/e denote by " e^ the element of -t (k) defi­

ned by (̂if-) = <-5*r̂  > f e A • T h e ,index family (e^)^ G A 

forms the canonical basis of E . 

To every operator T G J£( . i (A),Z (B)) there corresponds 

a unique matrix v/ith scalar entries C t ^ ) , <x€A, /JGB s.t. 

the <* -th column represents Te^ in the canonical basis (e/$ ) 

of -6(B) . 

According to the behaviour of T , we will partition the 

index sets A,B into disjoint subsets A-, Bi (i=0,l,2,3,4) . 

Let AQ = {<* G A , t ^ = 0 for all lSe B } , BQ = { /Se B , 
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tAiX = 0 for all <x £ A. } . Next let C be the set of all ele­

ments c*GA such that: 

(1) there exists a /5€B with t ^ ?- 0 and 

(2) if tA^ =- 0 for some /5GBf then t^ = 0 for all 

Nov/ we define A, to be the set of all elements o(Gk s.t. 

t* ?- 0 for only one /!>GB and we put A2 = CNA., . Let A^ 

be the set of all <X € AN A- such that: 

(i) there exists exactly one /i£B with t * ? 0 and 

(ii) tA*. ̂  0 ̂ t ^ = 0 for all <£ ?- A . Finally we put 

4 i=0 

For i = l , 2 , 3 , 4 l e t B± = { /SGB , t ^ s* 0 for some ^ G A . } 

(Fig. 1 ) . 
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Theorem 1 . Let 1 < p < oo , p?-2 , T € i £ ( i (A),X (B)) and l e t 
*~~~~~~~~~~~~~~~~~~~~~" tr sr 

A. = 0 , || T||-1 • Then T is an extreme contraction iff the 

following two conditions are satisfied. 
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(a) flTe^fl = 1 for tfGA and fl Te^ || = 1 for tiGB, 

(b) AQ = 0 or A2 = BQ = 0 in the case of l<p<2 

and 

BQ = 0 or B-j = AQ = 0 in the case of 2 < p < oo . 

Corollary. For pj*2 (l<p<oo) the set of all extreme cont­

ractions on the / -space (dim£2) is not closed. 

Let X denote the two-dim .£ -space* 

Theorem 2. Let 1 < p < oo , pj*2 and T € <£ (X,X) , || T || = 1 . 

Then T is an extreme contraction iff either T attains its 

norm in two linearly independent vectors in X or T is of the 

form 

1° T = X®e i in the case of l<p<2 

2° T = ei®y in the case of 2 <p <oo 

with x,y t e^ (i, j=l,2) , || x || = fl y || = 1 , i.e. 

x®y : X—>X , (x®y)(z) = <z,x>y . 
m m 
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