R. Gząślewicz Some extreme contractions on l_p -spaces In: Zdeněk Frolík (ed.): Abstracta. 7th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1979. pp. 25–27. Persistent URL: http://dml.cz/dmlcz/701142 ## Terms of use: © Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1979 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz Seventh Winter School on Abstract Analysis 1979 ## Some extreme contractions on L_p-spaces R. Gzaślewicz An operator $T\in\mathcal{L}(\ell_p(A),\ell_p(B))$ is extreme contraction if it is an extreme point of unit ball (A,B - index sets, $\ell_p(A)$ - Banach space (over R or C) of all p-summable functions on A). Let $1\leq p\leq \infty$. For $p=\infty$ we can characterize all extreme contractions as the lattice homomorphisms taking 1 into 1 multiplied by functions of absolute value 1 [M.Shaver, Israel J. Math. 12 (1972), C.Kim, Math. Zeitsch. 151 (1976), A.Iwanik, Colloq.Math. 40]. For p=1 and real \mathcal{L}_1 -space extr. contr. can be characterized (by duality) [Iwanik, Kim] . For p=2 and field ${\bf c}$ the set of extr. contr. coincides with the set of all isometries and coisometries [Kadison, Ann. Math. 54 (1951)]. For $\alpha\in A$ we denote by e_{α} the element of $\mathcal{L}_{p}(A)$ defined by $e_{\alpha}(\gamma)=\delta_{\alpha}\gamma$, $\gamma\in A$. The index family $(e_{\alpha})_{\alpha\in A}$ forms the canonical basis of E . To every operator $T\in\mathcal{L}(\mathcal{L}_p(A),\mathcal{L}_p(B))$ there corresponds a unique matrix with scalar entries $(t_{\beta\alpha})$, $\alpha\in A$, $\beta\in B$ s.t. the α -th column represents Te_{α} in the canonical basis (e_{β}) of $\mathcal{L}_p(B)$. According to the behaviour of T , we will partition the index sets A,B into disjoint subsets A_i , B_i (i=0,1,2,3,4). Let $A_o = \{ \alpha \in A , t_{\beta\alpha} = 0 \text{ for all } \beta \in B \}$, $B_o = \{ \beta \in B , t_{\beta\alpha} = 0 \text{ for all } \beta \in B \}$, $B_o = \{ \beta \in B , t_{\beta\alpha} = 0 \text{ for all } \beta \in B \}$ $t_{f^{l,\alpha}}=0$ for all $\alpha\in A$. Next let C be the set of all elements $\alpha\in A$ such that: - (1) there exists a $\beta \in B$ with $t_{\beta \lambda} \neq 0$ and - (2) if $t_{\beta\alpha} = 0$ for some $\beta \in B$, then $t_{\beta\beta} = 0$ for all $\beta \neq \alpha$. Now we define A_1 to be the set of all elements $\alpha \in A$ s.t. $t_{\beta\alpha} \neq 0$ for only one $\beta \in B$ and we put $A_2 = \mathbf{C} \setminus A_1$. Let A_3 be the set of all $\alpha \in A \setminus A_1$ such that: (i) there exists exactly one $\beta \in \mathbb{B}$ with $t_{\beta x} \neq 0$ and (ii) $t_{\beta y} \neq 0 \Rightarrow t_{\delta y} = 0$ for all $\delta \neq \beta$. Finally we put $A_4 = A \setminus (\bigcup_{i=0}^{\infty} A_i)$. For i=1,2,3,4 let $B_i = \{ \beta \in B, t_{\beta \alpha} \neq 0 \text{ for some } \alpha \in A_i \}$ (Fig. 1). Theorem 1. Let $1 , <math>p \neq 2$, $T \in \mathcal{L}(\ell_p(A), \ell_p(B))$ and let $A_4 = \emptyset$, $\|T\| \leq 1$. Then T is an extreme contraction iff the following two conditions are satisfied. - (a) $\|Te_{\alpha}\| = 1$ for $\alpha \in A$ and $\|Te_{\beta}\| = 1$ for $\beta \in B$, - (b) $A_0 = \emptyset$ or $A_2 = B_0 = \emptyset$ in the case of 1 and $B_{0} = \emptyset \quad \text{or} \quad B_{3} = A_{0} = \emptyset \quad \text{in the case of } 2 Corollary. For p\neq 2 (1 < p < \infty) \tag{the the set of all extreme contractions on the \mathcal{L}_{p}-space (dim \geq 2) is not closed.$ Let X denote the two-dim L_p -space. Theorem 2. Let $1 , <math>p \ne 2$ and $T \in \mathcal{L}(X,X)$, ||T|| = 1. Then T is an extreme contraction iff either T attains its norm in two linearly independent vectors in X or T is of the form 1° T = X \otimes e_i in the case of 1 2° T = e_i \otimes y in the case of 2 \infty with $x,y \neq e_j$ (i,j=1,2), ||x|| = ||y|| = 1, i.e. $x \otimes y : X \longrightarrow X$, $(x \otimes y)(z) = \langle z, x \rangle y$.