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SsVeilid WINPER SCHOOL (1979)

Some remarks on paracompactness of GO-spaces
by
W. Kulpa (Katowice).

Iet X = (X,<) be a linearly ordered set. A subset C @ X is
suid to te convex, whenever a,b € C and a=<b imply that [a,b]<C.
A convex set C =4, A =X, is called a convexity-component of A,
wlenever C'A C # ¢, implies ¢'eC for each convex sct C'< A,

4 linearly ordered tovologicul space X is o triple X =(X,< fkf‘)
where (X,-<) is a lincarly ordered scet c¢cn which a tonology
is defined by the subbace of all sots (e—,a),(b,—») with a,beX,

A generalized ordered space X (=bbroviabed GO-space) is a
triple X = (X,<,T) , where T D A(<) is a topology with
e base consisting of convex subzets of X.

A continuous map f: L =>4 from u« GO-space X is said to be
convexity-paracompact (sonvexity—zerodimensional) iff cach con-
vexity component of f"1(m), mn€li, 1s paracompact (is & one-~-point
set) .

Theorem 1., If a GO-space X has a convexity-paracompact map
into a metric space, then X is parucompact.

- - -
Theeorem 2, If a GO-space X hus « perfect mop onio o Dicudonnc
coanplete Space, then X ig paracomnpact,.

Theorazm 1 strengthens a mesult of Fuober [] who hus proved

thab each 30=-spuce which has o convexiby-zsrodinenzlion:l ang

ingo a a2btric ocpuce mush be parweamract, Theorem 2 is & strength-
ening of a result of Lubtzer [»'r] who has proved that cach
Dieudonne complete GO-space is paracompact.

The above theorems one can obtain from the Pressing-Down
Icmma and from the following results:



Factorization Theorem [3]. Iet £f: X => i be a continuous map
from & GO-space X = (X, <,T) into a metric space li. Then there
exists a metric GO-space Z = (Z, < ,T) and continuous fmaps
g X onte, Zy, h: 2 —» Il such that £ = heg and g(x)=# g(y) whenever
X £y, for each x,y €X.

Lommaf | If a GO-space X has a continuous msp f: ¥ —» i1 into
a spuce M with a Gy -liagonal such that for each mel, £ (m)
is pszraconpact, then X paracompact,

Ie ns ‘~|. If f: 3 —=>» I is a centinuous map from a stationary
s2t Sek , Kk = cfk> @, inbo a space M with a §g-disgenal,
then therc is an o <¥ such that £f]5n [«,k) is constent.

The lust Iemwa generalizes a result of Lutzer [l.t] vho has

proved thac If £f: & —» M is a continuous mup of a stationary
set ek ,k= cfk>w, into a mebric space M, then card(£[s])<%

~gprace X is nob paracompact iff some closed
eomorphic to a stationary set S Q K,
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