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SENEMfflWINI^ (1979) 

INVAIilD VITfcLI mS)Riflv.S 

D. Ereiss 

Vitali type covering theorems in finite dimensional Banach 

spaces hold (under some regularity assumptions on the considered 

covers) for arbitrary measures (see O Q ) - If we drop the assum­

ption of finite dimensionality the situation becomes different. 

Efy a result of Davies \j)l there exist distinct probability measures 

on a metric space which agree on all balls. Althou#i this parti­

cular behaviour is not possible in the case of Hilbert spaces, 

it was shown in £pj that Vitali Qheorem does not hold for centered 

balls and Gaussian measured. The following result shows that even 

the Density Theorem does not hold in infinitely dimensional 

Hilbert spaces. 

Theorem. Let H be a separable infinitely dimensional real' 

Hilbert space. Ihen there is a finite measure u on the Borel C ~ 

algebra of H and a compact set. Cell such that u(C)>D and 

Proof. Efy induction one easily defines a sequence {a^} of 

positive numbers and a sequence {N.} of natural numbers such that 

Let S be the set of all finite sequenced (Zp...,!^) of natural 

numbers such that z. ̂  N. and let Z be the set of all infinite 

sequences (z-,,.••! of natural numbers such that z.<LN. • 

For each z = (z1,...,zJi)€ S choose h(z)e H such that . 
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||n(z)||̂  = 2~
k
 and h(y),h{z) are orthogonal whenever .Y^zcb, ,v/z. 

Put
 k 

g(z) = 2 Г h(z-,,...,z.) for z=(z-,...
r
z

k
)^S. 

J=l
 J 

f(z) = JE hlz-,,...,z.) for z=(z
nl
...)6Z . 

j=l
 X J 

Note that l|f(y) - f(z)jl2
 = 2~

k + 2
 if y,zc?Z, y ̂  z and 

k is the least natural number such that z
k
 7- y

k
 and 

jlf(z) - gCz-p...,^)/*
2
 = 2~

k
 for each zffZ and natural k. 

r
JLhe set Z considered as a product of finite topological spa­

ces is a compact metrizable space. Let v be the product of mea­

sures v. on the sets {l,...,N.j», where v.{n) = {N-)~ . 

Put u = f (v) + -^- a, £ , x ,where 
(Zp...,25^)6 S ^ ß t V ^ V 

f(v) is the image measure and £ is the Dirac measure at x. 

If C = f(Z) , z£Z, x = f(z) and 2 " k f r 2 < 2 " k + 1 then 

u(B(x,r)a C) = v { y e Z ; y± = z^ for i= l , . . . , k+ l} = (-^•••Nk+1) '1 

and u(B(x,r))^ak , since g(z 1 , . . . , z k )$B(x , r ) . Ihus 

u(B(x,r)QC)Y - T.j TJ v-1 
ufer)) " (akNr• ' W • 

^ Ite-iark. If we construct the sequences {ak}f{wk\ so that 

Z> a, N, ...N. < 1 , then the measure w = u - 2f (v) has the 
k=l K 1 K 

following properties 

(i) w(H)<0 

(ii) for each x^H there is r(x)>0 such that w(B(x,r)),55 0 

for each positive r<r(x). 

This example should be compared with a recent result of 

Christensen £cj: If u is a measure on H such that for each xCH 
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there exists r ( x ) ; > 0 such that u vanishes on all balls contained 

in the ball with center x and radius r(x), then u vanishes i d e n t i c a -
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