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SEVENTH WINTER SCHOOL (1979) 

WEAK COMPACTNESS IMPLIES STRONG COMPACTNESS IN THE SPACE OF 

UNIFORM MEASURES. 

BY WALTER SCHACHERMAYER 

Recall the definition [ 2 ]: A Saks-space is a triple (E,II-||,T), 

where (E,ll-ll) is normed space and T is a locally convex 

topology on E such that OE f the II • II- unitball of E is T - closed anc 

x-bounded. One defines the "mixed topology" Y to be the finest 

locally convex topology on E agreeing on OE with x. 

One may consider the following dual object {E'Y/ II • II, (it,a (E'Y,I 

where (E'Y,II"II) is the Banach space of Y
-continuous linear forms on I 

equipped with the dual norm of CE,H) and #- is the family of 

Y-equicontinuous subsets of E'Y equipped with the a(E'Y,E) - topology 

for which the members of H are relatively compact. If (E,il-li,x) 

is a complete Saks-space, i.e. E is Y-complete, then by 

Grothendiecks completeness theorem one may recover E as the linear 

functionals on E' such that the restriction to every H in 7̂  is 

a(E'Y,E- ) -continuous ([5], th. IV. 6.2). 

A typical example of such a dual object of a Saks-space 

is the following: Let X be a complete uniform space and define 

(U (X),.!-.!̂ ) to be the Banac.h-space of uniformly continuous bounded 

real-valued functions on X equipped with the sup-norm. Let "it be the 

family of uniformly equicontinuous bounded subsets of iX (X) 

(abbreviated U.E.B.) equipped with the topology x of pointwise 

convergence on X. The U.E.B.-sets are relatively compact in U (X) 

with respect to x . 
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Define the space of "uniform measures on X" to be the snace 

of linear functionals on U (X) such that the restriction to each 

U.E.B.-set.is T - continuous. If we equip M (X) with the 

norm dual to II • II ̂ and the topology Y of uniform convergence on 

the U.E.B.-sets it becomes a complete Saks-space. 

Theorem; For a subset K in iyj (X) the following are equivalent * 

(i) K is relatively a(Mu(X)f Ub(X)) -compact 

(ii) K is relatively Y - compact. 

This theorem is due to Pachl [ 4 ] f who pro.ved it using rather 

delicate arguments. In [ 3 ] uniform measures were studied by using 

systematically the framework of Saks-spaces and Co-Saks-spaces and 

an easy proof of the above theorem was given there. I give here 

an outline of this proof; for details the reader is referred 

to [ 3 ]. 

Let's first give some motivating examples. 

EXAMPLE I: If X is a uniformly discrete space, Ub(X) equals 1~(X) 

and the U.E.B. - sets are just the bounded subsets of 

1 (X) equipped with the topology of pointwise convergence on X. 

M^(X) is then 1 (X) and y is the topology of norm-convergence in 

1 (X). So the theorem reduces in this case to Schur's lemma that 

a weakly compact subset of 1 (X) is norm-compact. 

EXAMPLE II:If X is a compact Hausdorff-space , Ub(X) equals C(X), 

the space of continuous functions on X, and Ascoli's 

theorem implies that the U.E.B.-sets in U (X) are the relatively norm 

compact sets. M (X) is then the space of Radon-measures on X and Y 

is the topology of uniform convergence on compact subsets of C(X) 

So the theorem reduces in this case to the Banach-Dieudonne-theoreir. 

([ 5 J, th. IV. 6.3.) . 
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Let us now turn to the proof of the theorem. 

It is shown in [ 3 ] that one may reduce to the case where X is a 

complete metric space by the use of some easy formal manipulations 

with projective and infective limits (taken in the proper categories!] 

So let us assume from now on that (Xfd) is a complete metric space. 

As was shown in [ 1 ] the uniform measures then are exactly the boundec 

Radon measures on (Xfd) , i.e. the members y of (U (X) f IMI^)' that 

satisfy the following tightness condition. 

(•)*Ve>o there is a compact K in X s.t. for f e Uh{X\ HfU^ £ 1 and f 

vanishing on K 

l<ffy^>l< e. 

It was pointed, out:inl[3] that this is also equivalent to the 

"Lipschitz-tightness" of y, i.e. to the condition 

(••)Vc > 0 there is a compact K in X s.t. for f G Ub(X) f II f II Z 1 f 

f vanishing on K and f obeying a Lipschitz - constant 1 

l<f,P>l < e. 

This notion gives rise to the crucial 

DEFINITION: A subset K of MU(X) is called "uniformly Lipschitz tight" 

if for e> 0 there is a compact K in X such that for f 6 U (x) 

llf ll̂  £ 1f f vanishing on K and f obeying a Lipschitz-constant 1 

l<'ffp>l < e. for all p 6 K. 

We shall show that in the case of a complete metric space (Xfd)(i) 

and (ii) in the theorem are equivalent to 

(iii) K is* bounded and uniformly Lipschitz-tight. 
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Proof of the theorem: (ii)-=> (i) : trivial. 

(iii)=^(ii) : This is a consequence of the following elementary 

lemma [ 3 ] and the observation that on U.E.B.-sets the topologies 

of pointwise and compact convergence on X agree. 

Lemma;Let H be a U.E.B.-set in U (X). Then for e > 0 there is a 

constant M such that for every g G H there is f e U (X) , ||f |>CD £ M 

and f obeying a Lipschitz constant M, such that 

Hf - g|loo < £. 

(i)=>(iii): This is the essential part of the proof and we 

reduce the problem to Schur's lemma. 

If K is relatively tf(Mu, U ) - compact, then K is 

bounded in norm (say by 1) by the uniform boundedness theorem. So 

assume K is not uniformly Lipschitz - tight. We shall show how to 

construct an n > 0, a seauenee {y )~ - in K and a sequence {f }~ 1 
n n—i •*• n n-=i 

in U (X), ll-LII,,, -»1f with pairwise disjoint supports in X and obeying 

a Lipschitz-constant n" such that 

K-n'%)' * • • n є w 

Once this is done, we complete the proof as follows: 
CO CO 

For any sequence *
x

n
*

 n = 1
 -n 1 , £Xn

f
n (the sum taken pointwise) is 

in (i (x) and obeys a Lipschitz - constant n"~ ,||{x } || 

Hence m 

n n-1 ^ n n 

is an operator from 1 to U (x) which sends bounded sets to U.E.B. 

sets. The transposed operator T1 sends .'•• (X) into 1 and T1 (K) 

is a relatively a(l1,l°°) compact set. This contradicts Schur's Lemma, 
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as the n-th coordinate of T'(p ) is in absolute value greater 

or equal than n and T' (K)' therefore is not relatively norm-compact 

in l1. 

So let us carry out inductively the construction of 

flO-, i and (fM) ., . By assumption there is 0 < n £ 1 so that n n=i n n=l -* 

for every compact set C in X there is a function f_ with HfpIL - U 

obeying a Lipschitz-constant 1 and vanishing off C and there is 

Pc in K such that |<fc, pc > | ;> 4n . 

Define f- by 

{0 if lf 

-c- 2l1 

fc + 2п 

f
c
(x)l й 2n 

f
c
 : x > V c "

 2 n i f f
C

( x )
 *

 2 n 

if f
c
(x) £-2n. 

Then f again is a function with.If 11̂  £1 and obeying a Lipschitz-

constant 1 but f even vanishes on each point of x with distance 

from C less or equal than 2n. . Still we have - • • 

l<fcf p c>l * 2n. 

We can now proceed with the construction. First find g^ in U (X) 

arid IJ. in K with llg.. D^ £ 1 and obeying a Lipschitz-constant T, and 

such that l^g^fP^I -- 2n. 

Since y. is a Radon - measure on X we can find" a compact set C-

so that ly..l (X \ C-) £ n. 
Let h1 : x > [1 - n"1 d(x/C1)] + . 

Then f1 : x > [g .j(x) A h.. (x) ] v [ -h . . (x)3 
is a function with llf., Il̂  £ 1 and obeying a Lipschitz - constant 

n~ and vanishing for allx with distance from C- greater than n. 

We have , v 

|<flf y^l -- n. 

At the second step find q2 in U (x) with ng2 |l00 £ 1, obeying a 

Lipschitz - constant 1, and vanishing for all x with d(x,C.-) $ 2n 

and find y2 in K with Ksfo'^^' -
 2n" s i n c e vo ~s a R a d o n" m e a s u r G 

on X we can find a compact subset C2 of iupp(g2) 
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the support of g2, such that |p2l(supp (g2) \ C2) £ n. 

Let h2 : x > [1 - n"1 d ( x , C . ] ) ] . 

Then f2 : x > [? 2
( x ) A h

2
( x )- v I>h2(x)].is 

a function with Hf^'L * 1 obeying a Lipschitz - constant n 

and vanishing for all x with distance from C 2 greater than n 

(whence in particular on the support of f-). Further we have 

l^ f2'y2 / ' * n-

Continue in the same fashion Lo finish the induction, thus com­

pleting the proof of the theorem. q.e.d. 

With exactly the same reduction to Schur's lemma one also 

proves the following 

Corollary:Let {i-n}~_.j be a weak Cauchy - sequence in M (X) . 

Then (i-n}n-i is y - Cauchy and so Y ~ convergent. 
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