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SEVENTH WINTER SCHOOL (1979) 

ON THE EXISTENCE OF G-COMPACTIFICATIONS 

Jan de Vries 

Mathematisch Centrum, Amsterdam 

A topological transformation group (ttg) is a triple <G,X,ir> where G 

is a topological group, X is a topological space and IT is an action of G 

on X, that is, IT: G x x -»- X is a continuous mapping such that 

(i) Vx £ X: ir(e,x) = x (e denotes the identity element of G), 

(ii) V(s,t,x) £ G x G x X: :r (t,TT(s,x)) -= Tr(ts,x). 

A ttg <G,X,IT> will also be called a G-space. Using the notation IT X :=Tr(t,x) 
e t s ts t 

for (t,x) £ G x x, we have IT = 1 and IT on =*$ ,.,So t •*- IT defines a homo-

morphism of G into the group of all autohomeomorphisms of X. 

If <G,X,TT> is a G-space and if there exists a G-space <G,Y,o> such that 

Y is a compact Hausdorff space and X is (homeomorphic with)a dense subset of 

Y such that a | = TT for every t € G, then <G,Y,a> is called a G-compacti-

fication of <G,X,TT>. A necessary condition for <G,X,TT> to have a G-compacti-

fication is, that X is a Tychonoff space. The question is, whether of this 

condition is sufficient. For HR-spaces, this question occurs in [2], and for 

general G-spaces in [3] in the context of reflection of G-spaces in the cat­

egory of compact Hausdorff G-spaces. The following result, which has just 

been published [4], provides a partial solution to this problem: 

THEOREM 1. If G is locally compact then every, G-space <G,X,TF> with X a 

Tychonoff space has a G-compactification. 

Another partial solution is included in Theorem 3 below, which is joint 

work of H. LUDESCHER (Timisoara, Romania) and myself. It is a consequence of 

the following theorem, in which the following notation will be used: ir t := 
t X 

Tr(t,x) = IT x for (t,x) € G x X; so IT : G -*• X is continuous for all x e X. 

THEOREM 2. (BROOK, [1]). Let <G,X,TT> be a G-space in which X is a Tychonoff 

space, and suppose that there exists a uniformity I'J for X (i.e. compatible 

with the topology of X) such that the following conditions are satisfied: 

(i) {IT : X £ X} is W-equicontinuous at e; 
x t 

(ii) Vt £ G: TT : X -> X is W-uniformly continuous. 

Then <G,X,TT> has a G-compactification. 

Proof (outline). Let W be the weakest uniformity on X such that every W-

uniformly continuous function from X to the interval [0,1] is W -uniformly 
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continuous. Then W is compatible with the topology of X, and (X,W ) is pre-

compact, i.e. the completion X of X w.r.t. W is a compact Hausdorff space. 

Using (ii) , it is easily seen that each TT : X •> X is W -uniformly continuous, 

hence has a (uniformly) continuous extension o : X -> X . Using condition 
t * * 

(i) , it is not difficult to show that the mapping o: (t,z) >*• o z: G*X +X is 

continuous. Then <G,X ,a> is a G-compactification of <G,X,TT>. • 

THEOREM 3. Let <G,X,TT> Jbe a G-space with X a Tychonoff space, and suppose 

that there exists a uniformity U for X such that {TT : t £ G} is U-equi-

continuous at every point of X. Then <G,X,TT> has a G-compactification. 

Proof (outline). For a £ U, define 

G(a) := {(x,y) e X * X: (TT X,TT y) £ a for all t £ G}, 

and let V be the uniformity, generated by {G(a): a £ CI}. Then by Lf-equi-

continuity, 1/ is compatible with the topology of X. Moreover, {TT • t £ G} 

is {/-uniformly equicontinuous on X. Using this property of V, it turns out 

that the collection of all sets of the form 

[V,a] := {<TT X,TT y) : s,t e G & ts e V & (x,y) £ a}, 

V a neighbourhood of e in G and a e V, is a base of a uniformity W. Then W 

turns out to be compatible with the topology of X as well. The following 

properties of W and TT are now easily established: 

(i) {u :' x e x} is W-equicontinuous at e 

(indeed, for every neighbourhood V of e in G and every a e V we have 

(TT t,x) = (TT X,X) £ [V,a] for all x c X, provided t £ V) ; x
 t 

(ii) Vt£G: TT : X •> X is tt'-uniformly continuous 

(indeed, if V is a neighbourhood of e in G and a £ ll, then for every t £ G 

there is a neighbourhood W of e in G such that tWt c v, hence for all 

(x,y) £ [W,a] we have (TT X,TT y) e [V,a]) . Now Theorem 2 implies that <G,X,TT> 

has a G-compactification. 

REMARK. In [3; 7.3.12] a different proof of Theorem 2 has been given. In 

fact, there v/e proved that condition (i) in Theorem 2 is sufficient for 

<G,X,TT> to have a G-compactification <G,Y,a> such that W(Y) < max{w(G) ,W(X) }; 

here W(Z) denotes the (topological) weight of a space Z. 
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