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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980).

On @ Michsel’s conjecturs conéorning the Lindelof
property in the Csartesian products

K. Alater

It e known that if Y 1s s hereditarily Lindeldf space
and X 4s @ separsble metric epace or a Lindelof complete in
" the sense of Cech space or @ C - scattered espace then yux™o
1 Lindel5f, Let us recsll that - X is & 'C - scattered space
1f every closed subset F of X contains compact set with
non-empty interior with respect to F . Tﬁe first result, men-
tioned above, 1s due tols.'ﬂillnrd,socond one due to Z, Frolik,
third one due to K. Alster. .

Michael conjccfured thaf‘if YxX 1s Lindeldt for every
hereditarily Lindelof op;ce Y then. YxxX¥° 1s Lindeldt for
every horoditarily Lindelof cpnco Y. )

The anewer to the Michael’s conjecture ig a negative one
prdvidod_thlt the condition (x) holﬁl.

The condition () says that ,

(«) there exists an uncountable coanelytic subset of the-
Cantor set which does not cﬁnfain uncountable conp‘ct
.uboet-. AR
‘Godel and P.S. Novikov. provod that (%) holda under the

Gidel’s axiom constructibility, L. Bukovsky, D.A. Martin,

R.M, Solovay and P, Vopdnka defined & model of set theory such

that N,;< 2N° -nd .every subut of the Centor set of. cardina-

';1ty Ny 18 gounglytic. R.M. Solnvty proved that if a measu-

rable nuaber exists than_ovury coanalytic set contains ghe

PN .

. Cantor set, = '
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" Under the condition (k) I hlvo obtlined tha follcuzng
two .xllplou. . " .
Example 1 («) ._Thora-cxioti X - such thié for cv;ry.horoditu-
rily LindelSf space - Y ‘and every natural nuaber n the pro;"
duct YxX" ' s L;pd§1af'bu:r X0 1a pot,
Example 2 () o There. exist a oépiynblo nctr;c.upuco “M- and
a space Z such that for every Lindelof space - Y and every
natural number n the product. ¥»z" and z"° -ro;LtndeISf
‘but M0 - 14 ‘not.. SO

Lot me finish with tho folluu&ng throo problnlo.

(1) Let vax be & Lindeldf space for cvory Llndelof :pa—
ce Y , 1Is it truo that XR° i L&ndolof.v
_ (2) Let YxX be s Lindolof space for every horoditarily
Lindel3f space . Y -, Is it true that X2 4s Lindeldf.
' " (3) Is 4t pooltblo to obtain Exllplo 1 nnd 2 without set -

* A

thooratical cocunptionl.



