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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

Measures representable as p-dinensional Hausdorff measures 

C. Bandt , U. Peiste and H. Haase 

Let (X,r) be a metric space, and let d(A) denote the diame­
ter of A . For every positive real number p , a Borel 
measure m^ on X may be defined by the following formula: 

mrP(B)-lim i n f { £ d P ( A ± ) | ^ A±2B f d( A i )<t} 

mp
p is called the p-dimensional Hausdorff measure on (X',r). 

This concept developed by Hausdorff Cll in 1913 has an 
intuitive geometric meaning. Take p=1 . d(A) might be 
called the lenght of A (it is the same for an interval on 
the real line). The 1-dimensional measure of a Borel set B 
is approximated in the above definition by the sum of the 

. "lenghts" of small sets which are needed to cover B. 
To get Lebesgue measure of a set B in the plane we have to 
cover B by small squares or circles and to add the area of 
these sets* the area of A now given by d (A) (p=2) • 

The concept of Hausdorff measure has been neglected in 
recent time. We emphasize its importance by showing the ' 
simple but astonishing fact that every locally finite 
diffuse (i.e. m({x))«0 for all x) measure m on Hn being 
positive on open sets is an n-dimensional Hausdorff 
measure with respect to a certain metric compatible with 
Euclidean topology. Note that every Hausdorff measure is 
diffuse by definition. . 

Example Every locally finite diffuse Borel measure m on R 
is the 1-dimensional Hausdorff measure generated by the 
pseudometrio r(xfy) » m([xfyf) . If m is positive on 
all intervals, r is a metric compatible with Euclidean 
topology. " 

Pr6of: Since d(A)» m(Cinf A, sup A Q * a(A) f m ^ B ) * m(B) 
for all B . If B is an interval, there are coverings of B 
by disjoint intervale of arbitrary small diameter, .m and . 
mp

1 agree on intervals, thus on all Borel sets. 
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Remarkt This shows that Hausdorff measures generated by topo-
logically equivalent metrics need not be absolutely continuous 
(there are diffuse locally positive finite Borer measures on R 
singular to Lebesgue measure). v 

On the other hand, we can show that every Borel measure m on 

a locally ̂compact metric space (X,r) given by % m(B)» B / f dm? 

where f is a positive continuous function, Is the p-dimen-

sional Hausdorff measure with respect to a metric rv topolo-

gically equivalent to r • r1 Is given by the "line integral11 

off,thati 8 ^ ^ ) + f ( j \ / . -•; 

r'(x,y) * inf i C *—£ i:LL",r(ei»6i+t> 1 0^»°i«iV*| 

Proposition Let f m be a finite Borel measure on Cantor space 
D-3̂ 0,1) dr.a locally finite,measure on D-{o}*, and let 
m(U)>0 for every open U •*Then for,every p>0 , mJLs a p-di-
mensional Hausdorff measure with respect to a metric on D , 
compatible with the product, topology, v 

Proof: Let r be a metric on D generating the product..topology. 
J-6* £Q > n=1>2,#*. be a sequence. of partitions of D into 
clopen subsets, such /that E ^ is & refinement of I> for 
every n and*that d(U^)<i for U^€.P^ • For two; different 

* n a n -̂n 

points x,y of D let n(x,y) be the smallest n for which Pg 
separates x and y and let \ r1 (x$y)^m(\](xfy)) where U(x,y) 
is the member of P^A yV-,1*containing x and y • It is easy to 
see that r' is an ultrametric, that is, it satisfies 
r'(x,y) < max(r*(x,2), r'(y,z)) for all x,y,z - The topology ' 
generated by r1 is the product topology since it has the open 
base consisting of all sets of the £ n • How m̂ JS-ra* follows 
from di(A)» miri^m(U) | U3A , U« £/Pn} * m(A) • ,For every 
compact set Band every o>0 there is a neighborhood Uof B 
with m(U-B)<J* . Then r(B;D-U)«g > 0 .f. and for every n with. 
i<£ the sets of |L intersecting B form a disjoint covering 
n -a. t * g A 

of B with union Smaller than U. Thus m and m_,, agree on. 
compact sejfs, hence on Borel-sets; Since r* is an ultrame­
tric, (r*)? is a metric for every positive p, and .m-srâ , is^ 
the p-dimensional Hausdorff measure with respect to •. .. (r1)?* 

>. # 

Proposition Let 5 be a finite or rf-finite non-atomic measure 

on a separated, and separable Borel space (X»Jfy and p>0 . 

Ihere is a*wetric r.on 2* with vm * m^P • ""* * . . ̂  . 



28 

Proof: All separable separated Borel spaces are isomorphic. 
There is.a one-to-one mapping f from Z onto D inducing an 
isomorphism between *A and the Borel -i-algebr% of D . In the 
i-fihite case f iX^ik-^pl* DxH may be chosen in such a way 
that msf*5 becomes locally finite* Let r1 be the metric 
constructed above from the measure ,m=f•£ on D * Then 
r(xfy)» (rKf<x)tf(y)}>

1/P yields,the desired metric on X • 

Proposition Let m he a locally finite diffuse Borel 
measure on E n being positive on every open set* Shen m is 
the n-dimensional Hausdorff measure with respect to a 
certain metric r* compatible with Euclidean topology* 

Proof: Oxtoby and Olam tZZ proved that there is a homeomor-
phism h from Rn onto R11, for infinite' m and onto l0fk£

n 

for finite, m , such that m(3) equals the Lebesgue measure 

i(h(B)) for all Borel sets B * Since %* nj* where r de­

notes the .maxHtii^ trie on E n we have only to put 

r'{xfy). r(h(x)fh(y)) . 

Remark! Obviously, this statement remains valid for diffuse 
finite Borel measures on (measurable) subsets of H21 • It may 
also be generalised to manifolds, and with some modification 
to arbitrary separable metric spaces* 
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