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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

Measures representsble as p-'dimensional Hausdorff measures

C. Bandt , U, Feiste and H. Haase

Let (X,r) be a metric space, and let 4(A) denote the diame-
ter of A . For every positive real number p , a Borel
measure mrp on X may be defined by the rollowing fomula:

mrP(B) =lnm tor{ Z dp(Ai) | U 423, aay)<e}

mrp is called the p-dimenaional Hausdorff measure on (X,r).
This concept developed by Hausdorff C1] in 1918 has en
intuitive geometric meaning. Take p=1 . d(A) might be
called the lengnt of A (it is the same for an interval on
the real line). The 1-dimensional measure of a Borel set B
is approximated in the above definition by the sum of the

. "lenghtas" of small sets which are needed to cover B.
To get Lebesgue measure of a set B in the plane we have to
cover B by small squares or circles and to add the area of
these sets, the area of A now given by 'a3(a) (p=2) .

The concept of Hausdorff measure has been neglected in
recent time. We emphasize its :I.mpor‘*'ance by showing the -
simple but aetonish.ing fact that every locally finite
diffuse (i.e. m({x})=0 for all x) measure m on R" " being
positive on open sets is an n-dimensional Hausdorf?
measure with respéct toa 'certa:ln metric compatible with
Euclidean topology. Note that every Hausdorrf measure is
dirfuse by definition. .

ample Every locally ﬁnite d:l.ffuse Borel measure m on R
ia the 1-dimensional Hauadorff measure generated by the
pseudometric r(x,y) = m([x,y[) . If m is positive on
all intervals, r is a metr:!.e eompatible with Buclidean -
topology. .

Proof: Since d(A)= m([inf A,sup AD. a n(a) , m, (B)i n(B)
for al1 B . If B is an interval, there are caverings of 3B
by disjoint 4intervals of erbitrary emall diemeter. .m end .

.m; agree on Mtgnﬂs."tm on all Borsl sets.



. L ; R -' fg’:"& "‘“'T:,_’z'r ‘§% . -
Remark: This shows that Hausdorfr -es:%‘es genere.ted. by topo~
logically equivalent metrics need not be ebsolutely continuous
(there are diffu& 1oca.11y positive finite Borel meesures on R
singular to I-ebesgt:e measure). SR v
On the othe: hand, we can show that every Borel mea.sure m ‘on
a locally compact mefric space (x,r) given by 'm(B)= f £ dm P
where £ is a positive “continuous function, is the p-dimen-
sional Hausdorff measu:re with respect to a metric r' topolo-
gically equivalent t0 T . r' is siven by the "line integral
of £ , that'is_ . _ e
r'(x.y) = inf {u 1%"“#“&1" °1‘x-°1"'°n'3

n A

Progosition Let m be a finite Borel mse.su:r:s on centor space
=10,1}" or a locally finite ‘measure on- D-{o} .y and let
- m(U)>0 for every open U .1Then for.every p)0 , m ie e p-di-
mensional Hausdorff measure witn respect to:a metric on D %
compatible with the product topology. "
Proof: Let r be a metrie on D genereting ‘the product. topology.
Let P » N=1,2,40s be a sequence af partitions of D into
clopen subsets,  guch that. P 41 15 8 refinement of - P for
every n and’ that a(u, )< i’or U,€ 2, « For- two. different
' points x,y of D 1e% n(x,y) be: the smsllest n for which By
separates X and y and let r'(xaﬂamw(x,y)) where U(x.y)
_is the member of gn(x y) 1 conta.ining Xxendy . It is easy to
gee that r' is'an ultrametric, that is, 1% satisfies
r! (x,y) £ max(ri(x,z), r'(y,z)). for all Y22 < The $opology °
generated by »’ is the produst topslogy since it has the open
base consisting of®all sets of the P, , Now mr ‘3m, follows
from d!(A)= win {m(U) | U24 , Uel/2 J¥ml4) . Por every
compact set ‘B and every &Ho there is.a nsighborhood U-of B
with n(U-B)<d" .. Then (B, D-U)=§>0 ., ‘and for every n'with
-<£ the sets of E, intersecting B form.a.disjoint coverins
“of B with union emeller then U, Thus ‘m and'm,)  agree on .
compact sets. hence on Borelx eets. Since ' r' is an ultrame-
tric, (r')F 4s a metric for ev;ry positive p, and «n-mr1 is,
the p-dimensiona.l Heusdorff measure with respect to - (r )P,
. Proposition Let zn he a rinite or. d-ﬁnite non-atomic measure
ona separstei and séparable Borel space (x..ﬁ) e.nd. p)o .
mhereisametrie ron X with m""‘r



?roor: All aeparable sep&rated '.Borel spacea are 1somorphic.
'There 1s.8 one~to-one mapping £ from X ontoD 4inducing en
1somorphism betwéen v end the Borel §-algebrs of D . In the
§-tinite case f:XPD-{o}= DxN may be chosen-in such a way
that m=fem’ beccmes 1oca11y r;ln:lte. Let r' be the metric
constructed gbcve from the measu.re m=feli on D . Then

_ r(x,y)- (r'(f(x).t(y))) /p yﬁ.elds the desired metric on X .

_P_rggoeigon ‘Let mbe & loca.lly Tintte dirfuse Bore]. .

. measure on B® being positive on every open set. Then m is
the n-dimensional Hausdorff ‘measure with respect to &
certain netric ¢’ cmpatibla with Euclidean topology.

. Proof: Oxioby and Ulam 23 proved that there is a homeomor-
. phism h from E° onto R®, for infinite m end onto 0,k[®

for finite.m , such that m(B) equals the Lebesgue measure

A(n(B)) for all Borel sets B « Since A=n " where r de-

notes the max-m-tric ox B® we have only to pu :
r*{z,y)= r(h(x),u{y)) . "

Remark: Obvinusly, this‘ statement remains valid for diffuse
finite Borel measures on (measurable) subsets of R® . It may
also be generalized to manifolds, and with some modification
to erbitrary separable metric speces,
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contein the last two propqsiuons. The "use of isomorphism

theorems was proposed :Ln discnsaions with several partici-
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. E. Grzegorek; z. Lipecki, P, Mankiewicz ‘and B.B.F. Thomas
who also confirmated us in further working on Hausdorff

measures.
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