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Operators generating p-stable measures on Banach spaces 

by 

Werner Linde 

Let E be a real Banach space and let R

D (
E ) » 0<p--2 , 

be the set of all p-stable symmetric Radon measures on E « 

Then we investigate operators X from the dual E' into 

L (_Q,P) , P(_l) = 1 , for which the mapping a —> exp (-|xa||P) 

is the characteristic function of a Radon measure (Ajy. which 

necessarily belongs to R

n(E) • By - A D (
E ' ' L D ) w e - e n o t e t n e 

P̂  P P 

set ..of all those operators. This generalizes the concept of 

so-called ^-Radonifying operators in the case p=2 # 

Theorem 1, For each (JJGR (E) there exists an X G A (E'.L ) 
_______.-____-_-.-____— p p p 
such that 

Given X £ A (E',L ) , 0 < r < p < 2 , we define 

Mx> := {/łxľd/«'xîx)}1/Г 

and 

1(X) := lim t / a i < { | | x l > t } 1 / P . 
t-*co 

Theorem 2. A (E*,L ) is a complete normed ( l - - ^ r < p ) resp. 
_______________________ p p 

quasi-normed space vv.r.t, A
p
 • Also 1 defines a quasi-norm 

on A
p
(E'.t

p
) . 

Corollary, Given r,q with 0 < r < q < p , then there is a cons

tant c > 0 such that for all Banach spaces E and for all 

jUlGR (E) the estimation 



111 

{ / l |xpdMx)} 1 / , »Sc{ / |xrdMx)} 1 / r 'r 

E E 

holds. 

This corollary generalizes a result of Hoffmann-J/rfrgensen. 

The next theorem answeres the question in v/hich cases 

A (E',L ) becomes complete w.r.t. 1 (0<p<2) . 
H H 

Theorem 3. Let E be a Banach space. Then the following are 

equivalent: 

(1) JL (E',L ) is complete w.r.t. 1 . 
H H 

(2) E is of stable type p , 

(3) 3 c > 0 s*l> f o r a 1 1 ra^R
p(E) t n e following 

is val id: 

sup t p p{ | |x | |> t } < c lirn ^ ^ { f l x | > t } . 
t >0 t~*co 

I f we denote by Tf , 0 < q < oo , the ideal of q-absolutely 

summing operators the following holds: 

Theorem 4. I f 0<p<2 and 0<q<oo i t follows 

V E ' - L
P ) £ V E ' ' L p > • 

Now, one may ask in which cases there is equality between 

AD(E',L ) and 77 (E»,L ) . S.A. Chobanjan and V.I. Tasielad-

ze proved in 1977 that this happens for p=2 if and only if 

E is of (stable) type 2 , In the case 0 < p < 2 we«get: 

Theorem 5. If 0 < p < 2 then the following are equivalent: 

. c1) V E ' .V = VE'V • 
(2) E is isomorphic to a subspace of some ^ (y) and 

is of stable type p . 

This shows that in contrary to the case p=2 for 0 < p < 2 the 

class of Banach spaces with -/^-D(
E''Lp) s ^p(E''Lp) i s ̂ a r 

smaller. 
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Another d i f f i c u l t y a r i s e s . I n genera l X £ A ( E ' , L ) does 

not imply A X G J V . ( E ' , L ) f o r each operator A i n L , 

0 < p < 2 . 

Thus, there is the following problem: 

Characterize Banach spaces E for which 

AX€A p(E',L p) 

whenever X G l (E'(L ) and A is an operator in L 

Remark. It is known that L L0'1] n a s t n is property for each 
——————' T 

p i f l < q £ 2 and i t does not hold f o r any p i f 2 < q < o o . 

F i n a l l y we want to g ive some examples of 7 L ( E ' , L ) . 

Theorem 6, a) I f p < q < o o and K q < c o , then 

XGA.p(lq. , L p ) , l / q ' + 1/q = 1 i f and only i f ' ( £ | Xe . | 3 ) 1 / q g 

G L where {&*} denotes the sequence of u n i t vec to rs i n 1 , 

b) I f l < q < p < 2 then 

X € A p ( l q , , L p ) i f and only i f £ ( j | Xe. | P d P ) ^ P < co . 

Remark. It is also possible to characterize A (L . ' L
D)

 i n 

the case a) while the same is not known in the case b). Also 

the class A (1 , ,L ) is not described. 

For further informations about the subject we refer to 

a forthcomming paper by the author (the same title) and a joint 

paper of the author with. V. Mandrekar and A. IVeron to appear 

in Lecture Notes of Mathematics. 
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