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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

\ 

A note concerning the "Feynman integrability" of sets 

of trajectories 

M. Zahradnik 

For the information on the subject of Feynman integral, 

see [ l3^ a n d C2] • 
There were, on these Schools, some lectures concerning this 

theme, too. 

The effort in this area is mainly done in the direction of 

finding some reasonable classes of "Feynman integrable" func­

tions. 

Perhaps the most complete treatment of this subject is 

the Albeverio-Hoegh Krohn theory [2] . 

Another approach to the subject is presented in a series 

of articles of Cameron, Storvick, Oohnson and Skoug (see e.g. 

W ) . • 
A typ ica l example of a "Feynman integrable" function on 

t ra jec tor ies i s a mul t ip l i ca t ive function of the type 

i J U ( x ( t ) . t ) d t 
(!) {x-~e a } : X<a'b>-*C 
where X a RJ , js-1,3, etc. In the following, a-0 and b=»l. 

The potential U is supposed to be sufficiently "regular-. 

On the contrary, no examples of "Feynman integrable" 

sets of trajectories are explicitly shown in these theories. 

In fact, the example presented there is the only simple ex­

ample of "Feynman integrable" set known to the author of this 

note. 
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We choose a quite general approach to the Feynman in­

tegral: 

given any semigroup T »{e j of operators on some 

L^(X, w) , define, for each cylindrical rectangle of the type 

Zi -• J : 1
 t (n0x . . . xan) e A(x<°'1>) 
o" # * n 

(0 = tQ< t l< ...<tn « 1) 

the Feynman operator integral by the formula 

(2) Û7(ӣ) - £ „ o e ( t n
"

t n
"

l ) Д
 -ЛІJ. ' . . . » e

t l A
c L 

1
 -"-n n-1 0 

.<VV.i>*.x. . --V 

•^o 

where ^ Q denotes the operator of multiplication by a 

characteristic function of H.
i
 . 

It can be shown, that, roughly speaking, there is no vec­

tor measure extending (2) except in the case of stochastic 

semigroup (see L4J ). 

But, of course, the case A » i A (where A is Laplacian, 

or, more generally, some selfadjoint operator) is of the main 

interest. 

This is the main difficulty in the theory of Feynman ••integral" 

In these note, we will show the -Feynman integrability** 

of tubes. 

We will, for simplicity, consider only flat tubes, i.e. 

the sets of trajectories of the type 

(3) t l L -={xex < 0 ' i : > , x ( t )££LVte<0 , l>} , 
. l ie$(x) . 

Consider any p a r t i t i o n 3) » (t± , 0 » t Q < . . . < t n « l } of 

the in te rva l < 0 , 1 > . 

Our main question is: 

does (2) converge for IL± « H f ixed and |[ 0 \\ —•* 0 ? 
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If this limit exists, it is natural to call it the (operator) 

Feynman integral of the tube t Q . 

In an analogous situation of functions (1), there ia a 

theory of Feynman integral, due to Nelson and others, based 

on the Trotter formula (5), We choose a similar approach, but 

the perturbations of semigroups studied there will be diffe­

rent from those studied in the Trotter formula: 
A 

namely, we study the convergence of ( % O. eT*) 

Now, our main result says. 

Theorem, 

Let A be a selfadjoint positively definite operator on some 

L2(X,^) , 

Consider the quadratic form < A(, ), (, )> and denote by 

"^ ( • J ' f - ) ^ i t s Fridrichs extension. 

Denote by <C £>& the restriction of < > to L (IL,^/) 

(i.e. to those functions in L (X) with support in XZ ) and 

denote by B the Fridrichs representation of <$C ^ o (thus, 

formally, < ( . ) . ( . » I L -<B(.).(.)> ) . 

Suppose further, that the following conditions are satisfied: 

(1) JD (A) Ci 0 IB) is dense in* L2(&,(jJ) 

(2) B has compact resolvent 

(3) v t 3 d \ fill f l M * i . I | f . ^ « < ^ = ^ 
3 s £ 0 < > D . with Ug-f|I<e. . IHI g HI1 < i 

(we denote by |||| f |||| - < f ,f > . || f ||= < f .f > ) . 

i AA 

Then (^jQ.e n ) n — * e1 X B ( \ € R ) 

in measure in the strong operator topology. 

Some comments to (1), (2), (3): 

If £L is sufficiently smooth and bounded in R , A = / 
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then (1) and (2) obviously hold. 

(3) can be shown by use of Green formulas. 

Proof of the theorem can be obtained by using the analytic 

continuation method, the Fatou-Privalov theorem and the fol­

lowing result. 

Theorem. 

Suppose that the assumptions of the previous thm are satis­

fied. Then A 

( > n e " " ) " - ^ e -
B 

in the strong operator topology. 

Note. I don't known a direct proof of the Theorem. 

The details of this note will be published elsewhere. 
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