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8th winter school on abstract analysis (1Ч&0) 

Time-space duality and Salam-Weinberg model. 

J. Soucek, V. Soucek 

Using the time-space duality (see [1]) the basic phenomenolo-

gical in-put to S-W model (before spontaneous symmetry breaking) 

can be discuss and clarified. With aid of the space-time duality 

as the leading principle we can show the following facts: 

1) There is a striking connection between the two - up to 

now unrelated - phenomenological facts: 

a) the weak interaction is left-handed 

b) elmg charges of electron, resp. neutrino, are -1 , 

resp. 0 . 

2) It is possible to set up a simple axiomatic treatment of 

S-W model for leptons (without Higgs fields) - 2 plau­

sible axioms suffice as an input. 

3) As a consequence of this approach the relation 9W= 30° 

can be derived. 

The time-space duality is formal symmetry (rather than duality) 

between complex and quaternionic quantum mechanics (see £l] or the 

other paper in this volume). Basic equations and correspondence 

between them is the following one: 

C-QM Q-QM 

- ±7>Qy = (i<r2 ® <rkdk + m<r3 g l ) ^ < s i ^ = (P^ 0 + m<^)7C 

where V i s a Dirac sp inor , where X = v i s a dou-
r 1 ** 

<̂o ® ^ = ° " iC51 , e t c . b l e t o f <-u a ternionic w a v * 
d Lis-, 0 J „ 

1 functions 
*0 = ̂  ' \ - 5 ^ • --1,2,3 ^ - £9 + ? £ j , j=1,2 



162 

i = ( i . p i 2 . , i - ) ... quaternion 

units 

2 

i £—> i 

x Q e-> x 

For m 4 0 the €- (resp. Q-) quantum mechanics describe bra-

dyons (resp. tachyons), so there is no hope to test the time-space 

duality. But for massless particles the time-space duality is the 

symmetry between known objects and can be used to derive some 

practical consequences. 

The time-space duality allows us to treat the massless part of 

S-W model with aid of two simple axioms. 

To have a possibility to act with both €- and Q-gauge trans­

formations on the same objects, we will consider wave functions with 

values in <DQ (complex quaternions), if we want to write a Dirac 

equation for them, we need at least 2x2 matrices with values in 

CQ , so we are forced to consider doublets of such functions. Hence 

the first axiom will be: 

Axiom 1: The basic (Dirac) equation of the theory is the equation 

2-

The second axiom describe the action of gauge transformations 

on wave functions: 

Axiom 2; Both C- and Q-gauge transformations acts only on some 

components of wave function, corresponding projectors (P and 

(p3 are dual to each other with respect to the time-space duality. 

More precisely, v/e suppose that the action of gauge transformations 

is described by 

^H> fs(e±a0Y) 

Vt--> ^ ( ^ e 1 ^ ) 

-»-> I Y-
(1) . (ill rdQ + coy.-a + m ^ ) f c= 0 , where f -= [ ^ j , ?. e CQ 
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and that 

to f* . 

is the projection, constructed in the dual manner 

We need only one phenomenological input now - the fact that 

weak interactions are left-handed. First we will use this fact to 

(t) 
derive the form of the parity operator A 7*4 -matrix and 

the projection operator To do this we shall decompose the 

wave function into complex components with aid of the substitution 

i н-> -icг 

vf = ^ + iy« i « 1,2 І-> V. 
[>ľ vfl 0 3 = Уa , J=1,2 . 

.21 „22 J 
LífS 

y i J 

For €-valued wave funct ion 

are (m = 0) 
r- *2J 

corresponding equations 

-> -> 
(ill ® 11 DQ + icr. ®<r 3 +m<r1®n)y = 0 

and so i n the C-picture we ob ta in 

, ( t ) 
Чr) ii , 5(r) 3 11 , 

1+ <r; 
ŕ(r) ® 11 

After the translation back to CQ-picture, we have 

, ( t ) = <r. # ' - - ', 
1+ <г. 

1 

Лз) 
a 

in 

Now we can derive the form of the parity operator A
v 

dual W
S
 -matrix and finaly a projection operator (T£ 

a completely dual manner. By means of the substitution ^ = 

= j ( 11 +±Cj)fi we rewrite the equation (1) into the Q-form (m=0) 

-» -> 
(i2) + Po Q + ±m(T)^ = 0 

and we can now decompose the wave function fi into real and ima­

ginary parts, both satisfying the same equation. The procedure dual 

to the one in dJ-picture gives us now 
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(the choice of i- is conventional). After coming back to €Q-

-picture we obtain 

A(s) = iP , ^ s ) ( Y O » cr3 y i ^ 

and finally 

^7S(V/) = 1/2 (V- <r3^ii3) . 

So now we have the following infinitesimal gauge transformations 

fQ¥> = i <P
S( f) , 1 v -= f*(f ) i 

and we see that they form a Lie algebra X = su(2) K u(1) with 

commutation relations 

PI' fj] - -2fijk fk ' 
[-0* -i] " - S2 ' K)« ^ = f1 ' 

pb- S] = ° * 
The abstract model is now built up and we can identify it 

with usual S-W model before symmetry breaking. To identify weak, 

elmg and hypercharge infinitesimal generators in our Lie algebra 

we shall use the following known facts: 

1) weak current is left-handed j with respect to the parity 

2) elmg current is vectorial J operator A^ ' 

3) a hypercharge generator is a central one 

4) Q = \ (T3+Y) 

From this facts we have 

fQ = kQ(<f0- ̂ 3) f ŷ = kY(~2 f0+ fy ; kQ , ky e rR . 

The relation <TQ = 1/2 (<C+ <fy) gives us ky = 1 , kQ = -1 . 

The knpwledge of charge and hypercharge generators tells us 

that the physical content of our wave function <f (i.e. in the 

usual C-picture) is 



165 

Y -

e
L
 V

L 

e
R
 V

R. L 

and for y written in more usual form y) we have 

У
Q 

-1í 
-1! 

0 
0 

f ү -
-II 

-2-11 
-11 

(The right-handed neutrino v
R
 is not contained in the standard 

S-W model, but with respect to the fact that it has no interaction 

with gauge fields, the physical content of the models is the same.) 

Let us now write the Lagrangian for our theory. The interac­

tion part Zj has the form 

where fl° = 11 ® 11 ® 11 ; t3k = -11 < ® б^ , k ш 1,2,3 ; 

-^ = V + V ' = 2 1 A ^ SA e oC r A-=0 

To write a Lagrangian for pure gauge fields it is necessary to 

prescribe a metric on the algebra X . Then 

fc
YM

 = ( p
^x i

P
^y

 } J p
^v

 =
 V

 A
>> ~ ** V +

 ^V >
A
^* 

The metric would be invariant with respect to a global gauge trans­

formation, so on the su(2)-subalgebra J ol, <£-,, <T~j it must be 

a multiple of Cartan-Killing metric and on the u(1)-part { SyJ 

we can choose an arbitrary nontrivial metric• Let us set 

( s <Г
ү
) = Лў ( fj. I SŁ) b 2

 «Г
V 

( <f
v
 I cГO = 0 ; 

where 

y i -y' " "
u
 •

 v u
k ' °ZJ ~ u uk£ * K °Y tak^ 

*,k = 1,2,3 

l̂ and b are the interaction constants. (In our forma-

lism the interaction constants are contained not in but in 
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£ . The gauge fields are not, of course, canonical fields, i.e. 

they need not satisfy the usual comutation relations. We can divide 

them by suitable constants and for new canonical fields £ ™ will 

have the usual form and the interaction constants will apear in 

fcj as usual.) 

The interaction part ic%- contains a pure spinor term, which 

gives us a metric (^M^ ) f° r spinor fields. It is the important 
-> 

fact now that our infinitesimal generators <f , <TQ are equally 

normed in described spinor norm (i.e. the eigenvalues are the same), 

because the space-time duality tells Us now that the dual genera-

tors <f and £"« would have the same norm in JL . The corres­

ponding relation is 

( f J f) = ( <f0 K Q) = b ; j -= 1,2,3 

and from fy = -2 <rQ + <T-j ** follows t h a t 

b2 = ( fQ | f0) = I (q - <r31 fY - cf3) -

hence 

(2) I = - / 3 - b . 

^ 2 + b 2 

* - Ф + ^(V + І * Y + ţ , í ) ф + ^ C * * ) 2 + ь 2 ( ř y ) 2 

We obtained the Lagrangian 

- IT^ + i ^ A Y > *Y + i < b V ^ > $ + u?ly)
2 + 

+ (bi£y ) 2
 f 

Y ~* 
where the fields t̂AT̂  , bA are already the canonical fields. We 

can compare X with the usual S-W Lagrangian 

<c =I[^( v - ^ V - i f ^ V^L + ^ ( ^ " i g v ) R 

and we obtain immediately g = ^ , g' == — . 

The relation (2) gives us now 
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There is an interesting interpretation of this fact. As we 

saw before, the correctly normed isospin generators are t in­

stead of the usual ^/2 , so "the correct" interaction constant 

is g = 1/2 g . The relation ^w= 30° reads then as e = g,^ 

and this can be interpreted as the equal strength of elmg and 

weak interaction (before the symmetry breaking). Hence the space 

time-duality is the remedy to usual problems with the degeneracy 

of the group U(1) K SU(2) and we are left with the only one inte­

raction constant. 

At the same time, the nice connection between the structure 

of the space-time (we can consider it as ixQ + ix ) and S-W group 

U(1) * SU(2) (a generator is ĉ i (T3+*1 <P ° ) can be easily seen 

in this approach. 
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