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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

A simple example concerning the global Markov Property of 

lattice random fields 

Heinrich v. Weizsacker 

1. N o t a t i o n . 

Le t T be t h e v e r t e x s e t of a c o u n t a b l e graph (eg . 7L , d £ 1) 

For A c T d e f i n e t h e boundary 9 A = { 1 € T : 1 £ A b u t 1 

i s a d j a c e n t t o some e lement of A} . Let S be a P o l i s h s t a t e 
T s p a c e . On ft = S c o n s i d e r t h e o r -a lgebras 

F = {{w : wf. € B} : B 6 Bore l (S ) } . A p r o b a b i l i t y mea

s u r e P on\ FT d e t e r m i n e s a " l a t t i c e random f i e l d " . 

D e f i n i t i o n : P has t h e local. HaJikov-Pn.opeAtij i f t h e con

d i t i o n a l d i s t r i b u t i o n s P ( - , * | V ) w i t h r e s p e c t t o P s a t i s f y 

P(A,« | F a A) = P(A,« | FTVV) 

fo r a l l A e FA and P -a lmos t a l l (o € ft, whenever A i s a {isvitz. 
A 

s u b s e t of T. I f t h i s h o l d s fo r a l l In&uvita A C T as w e l l , 

t hen P i s s a i d t o have t h e global hiaAkov-PAopextij. (There a r e 

obv ious more symmetr ic - r e f o r m u l a t i o n s of t h i s d e f i n i t i o n 

u s i n g c o n d i t i o n a l e x p e c t a t i o n s . ) 
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2. T h e P r o b l e m 

We study the question: When does the local Markov property 

imply the global one? 

First let us remark that for T = 7Z the global Markov Pro

perty of P is equivalent to saying that P is the law of a 

(not necessarily homogeneous) Markov chain. Suppose that P 

describes a "random line", i.e. w (k) = a(w)k + b(a>) P-a.e. 

for all k € 2Z and two real random variables a,b. Then'it 

is easy to sec that P in general does not describe a Markov 

chain, i.e. it. does not have the global Markov property. 

But it has the local Markov Property, since every finite 

subset A of E has at least two boundary points k ,k1 with, 

say, k < k-; so the values a(w), b(o>) are determined by 

U I M -

But in this example an easy explanation consists in the 

non-trivial tail behaviour: Given w(k ) the additional 

information contained in w(k..) is still present in the 

asymptotic behaviour as k1 • +<». Considerations like this 

suggest the 

.Cv. ,. P r o b l e m : Let F be t h e t a i l or-alqebra A ,_. . . r^y , oo A f i n i t e T\A 

Does the local Markov-Property imply the global one, if 

P/F is trivial? 

The answer is positive if T = 71 and S is countable. ([2], 

p. 447). The global Markov property has been also estab-
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lished in a number of higher dimensional cases, even for 

continuous parameter set (an appropriate definition. See 

[1] and the references there). I am inclined to say that in 

all these cases the main idea is to verify the hypothesis 

of the following 

P r o p o s i t i o n : The local Markov property implies the 

global one, if for each A P-almost all conditional proba

bility measures P(*,w I F.A) are trivial on F 0 Fk . 
OA «• A 

One way to prove and to use this proposition is to apply 

the characterization of triviality on F by an extreme point 

property ([3]). 

3. T h e e x a m p l e 

We construct a field with the local-but without the global 

Markov property which is trivial on F . It can be interpre-
2 

ted both as an example for T = 7L and S = {0,1} and (con-

sidering the column process) for T = 7L and S = {0,1} 

Let (r\v) be a sequence of independent Bernoulli variables. 
K k 6 S n n 

For n > 0 define S„ := 7 in, mod 2 and S „ := 1 TJ , mod 2. 
n k=0 k "n k=0 "K 

For (m,l) € 2Z define 5(m,l) by 



1 9 7 

Є ( m , l ) 

" 1 

S l 

S ì 

S - 1 

i f l > m _ _ O o r l < m ; _ 0 
o r 1 = 0 , m€ {-1 , 1 } o r l = m= ±1 , 

i f 1 > 1 a n d mЄ { - 1 , 1 , 1 + 1 } 

o r 1 < 1 a n d m€ { - 1 - 1 , - 1 , 1 } 

i f 1 = 1 , m€ { - 1 , 2 } o r m= 2 , 1 = o 

i f 1 = 1 , m Є { - 2 , 1 } o r m = - 2 , 1 = 0 . 
independent of all other variables 
if (m,l) is not of the above form. (eg. if m = l = 0) 

Thus we get the following picture (a x indicating that the 

corresponding £(m-l) is independent of all others) 
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It is not difficult to verify that the law of this ̂process 

has all required properties. (I do not claim that this is a 

very natural example . . . ) . 

A c k n o w l e d g e m e n t : I am very grateful for discus

sions on this subject with H. Follmer and M. Scheutzow.From 

the former I learned about this question and the latter 
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pointed out a mistake in an earlier "version of the example. 
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