Luděk Zajíček
On metric projections and distance functions in Banach spaces

Persistent URL: http://dml.cz/dmlcz/701209

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
We shall consider a real Banach space X and a nonempty closed subset $F \subseteq X$. For $x \in X$ denote by $d_F(x)$ the distance from the point x to the set F. The metric projection $P_F(x)$ on the set F is defined as the (possibly) multivalued operator

$$P_F(x) = \{ y \in F; \|x - y\| = d_F(x) \}.$$

The set of all x for which $P_F(x)$ contains at least two points will be denoted by A_F. The function is termed δ-convex if it is the difference of two convex functions. The hypersurface in X is termed Lipschitz (resp. δ-convex) if it is described by a Lipschitz (resp. Lipschitz δ-convex) function (see [7] or [5] and [6]). The sets A_F was studied e.g. in [2],[4],[3],[5]. If X is a separable strictly convex Banach space then A_F can be covered by countably many Lipschitz hypersurfaces [5]. If X is a separable Hilbert space then there exists [1] a convex f_F (namely $f_F(x) = 1/2 (\|x\|^2 - d_F^2(x))$) such that $P_F(x) \subseteq \partial f_F(x)$. Using a result on the differentiation of convex functions from [6] we immediately obtain the following

Theorem 1. Let X be a separable Hilbert space. Then A_F can be covered by countably many δ-convex hypersurfaces.

Question 1. Let A be a δ-convex hypersurface in \mathbb{R}^n. Does there exist F such that $A \subseteq A_F$?

Note that it is not difficult to prove that a boundary of a convex body in \mathbb{R}^n is a subset of an A_F.

Slightly modifying the Asplund's observation concerning the function f_F, we can obtain the following theorem.

Theorem 2. Let X be a Hilbert space or a finite dimensio-
nal Banach space such that \(\| x \| \in C^2(X - \{0\}) \). Then \(d_F(x) \) is a locally \(\delta' \)-convex function in \(X-F \).

This theorem has the following consequences.

Theorem 3. Let \(X \) be finite dimensional and \(\| x \| \in C^2(X - \{0\}) \). Then \(d_F(x) \) is twice differentiable a.e. in \(X-F \).

Theorem 4. Let \(X \) be finite dimensional and \(\| x \| \in C^2(X - \{0\}) \). Then \(A_F \) can be covered by countably many of \(\delta' \)-convex hypersurfaces.

Question 2. For which \(X \) each \(A_F \) can be covered by countably many of \(\delta' \)-convex hypersurfaces?

REFERENCES

