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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Cartesian closed hull of uniform spaces 

JiH Adamelc and Jan Reiterman 

Praha 

A concrete category is called cartesian closed topological 

CCT if it is initially complete, fibre small and has canonical 

horn-objects. The CCT-hull of a concrete category, introduced by 

H. Herrlich and L.D. Nel,is the least CCT category in which the 

original category is a concrete, fullf finitely productive sub

category. 

Definition. A homology on a set X is a collection Ch of 

its subsets (called bounded subsets) such that (i} each fi

nite subset is in (3 , (ii) if B-, , B 2
 e © tnen B-AJBp^CB f 

(iii) B£(B implies B'€(B for all B'C B . A bornological 

uniform space is a triple (x,^tC ,CB) where (Xf1c) is a 

uniform space, G> is a homology on X such that each set A 

C X with the property 

"for every covercce^U there is B € ® with AC st^ Bw 

is in (3 . Kcrphisms f : (xf U f (&) — > frf IT , C,) of homo-

logical spaces are those maps f : X —> Y which preserve bonded 

sets and are uniformly continuous on bounded sets. Each uniform 

space is regarded as a bornological uniform space with homolo

gy consisting of all subsets. 

Theorem. The CCT-hull of the category Unif of uniform 

spaces is the category Bunif of bornological uniform spaces. 


